Effect of Graphite Nanofibers Addition on the Electrochemical Behaviors of Platinum Nanoparticles Deposited on Activated Carbons

활성탄소에 담지된 백금나노입자의 전기화학적 거동에 대한 그라파이트 나노섬유 첨가효과

  • Jo, Wonbin (School of Chemical and Biomolecular Engineering, Pusan National University) ;
  • Oh, Misoon (School of Chemical and Biomolecular Engineering, Pusan National University) ;
  • Kim, Juhyun (School of Chemical and Biomolecular Engineering, Pusan National University) ;
  • Kim, Seok (School of Chemical and Biomolecular Engineering, Pusan National University)
  • 조원빈 (부산대학교 화공생명공학부) ;
  • 오미순 (부산대학교 화공생명공학부) ;
  • 김주현 (부산대학교 화공생명공학부) ;
  • 김석 (부산대학교 화공생명공학부)
  • Received : 2010.04.22
  • Accepted : 2010.05.12
  • Published : 2010.12.31

Abstract

In the present study, mixed carbon-supported platinum(Pt) nanoparticles were prepared by a chemical reduction method of Pt precursor solution on two types of carbon materials such as activated carbons(ACs) and graphite nanofibers(GNFs). Average crystalline sizes and loading levels of Pt metal particles could be controlled by changing a content of GNFs. The highest electroactivity for methanol oxidation was obtained by preparing the carbon supports having 15 wt% GNFs. Furthermore, with an increase of GNFs content from 0% to 15%, an electrical conductivity was changed from $10^{-4}S/cm$ to $10^{-1}S/cm$. By an introduction of 10 wt% GNFs additive, the electroactivity of platinum particles was enhanced, but was saturated in the case of 15 wt% GNFs contents. This was related with the fact that the electroactivity change was dependent on the electrical conductivity of mixed carbon supports and Pt particle deposition content or deposition morphology.

본 연구에서는 탄소지지체로 활성탄소를 주요재료로 사용하고 여기에 그라파이트 나노섬유(graphite nanofibers)를 함량별로 혼합시킨 후, 백금전구체를 포함하는 용액에 분산시키고, 화학적인 환원반응을 통해서 백금입자를 담지하여 제조하였다. 첨가하는 GNF의 함량을 조절하면서, 백금입자의 결정 크기와 담지함량을 제어할 수 있었다. GNF 함량이 15 wt%인 혼합지지체를 사용한 백금입자의 경우, 최대의 전기활성 특성을 나타내었다. 또한, GNF 함량을 0%에서 15%로 증가시킴에 따라 전기전도도가 $10^{-4}S/cm$에서 $10^{-1}S/cm$로 증가하였다. 첨가제 GNF를 10%까지 도입한 경우, 백금입자의 전기활성은 크게 증가하는 경향을 보이지만, 15%에서는 그 증가경향이 작아져서 포화되는 현상이 보였다. 이런 결과는 전기활성도의 변화가 혼합지지체의 전기전도도 변화와 백금이 담지된 함량, 그리고, 담지형태와 관련성이 있음을 알 수 있었다.

Keywords

References

  1. Joo, S. H., Choi, S. J., Oh, H., Kwak, J., Liu, Z., Terasaki, O. and Ryoo, R., "Ordered Nanoporous Arrays of Carbon Supporting High Dispersions of Platinum Nanoparticles," Nature, 412(6843), 169-172(2001). https://doi.org/10.1038/35084046
  2. Park, K. W. and Sung, Y. E., "Design of Nanostructured Electrocatalysts for Direct Ethanol Fuel Cells," J. Ind. Eng. Chem., 12(2), 165-174(2006).
  3. Kwak, C., Park, T. J. and Suh, D. J., "Preferential Oxidation of Carbon Monoxide in Hydrogen-rich Gas over Platinum-cobalt-alumina Aerogel Catalysts," Chem. Eng. Sci., 60(5), 1211-1217 (2005). https://doi.org/10.1016/j.ces.2004.07.126
  4. Kuk, S. T. and Wieckowski, A., "Methanol Electrooxidation on Platinum Spontaneously Deposited on Unsupported and Carbon-supported Ruthenium Nanoparticles," J. Power Sources, 141(1), 1-7(2005). https://doi.org/10.1016/j.jpowsour.2004.08.050
  5. Chen, C. Y., Yang, P., Lee, Y. S. and Lin, K. F., "Fabrication of Electrocatalyst Layers for Direct Methanol Fuel Cells," J. Power Sources, 141(1), 24-29(2005). https://doi.org/10.1016/j.jpowsour.2004.09.011
  6. Kim, T., Takahashi, M., Nagai, M. and Kobayashi, K., "Preparation and Characterization of Carbon Supported Pt and PtRu Alloy Catalysts Reduced by Alcohol for Polymer Electrolyte Fuel Cell," Electrochim. Acta, 50(2-3), 813-817(2004).
  7. Zhou, W. J., Song, S. Q., Li, W. Z., Sun, G. Q., Xin, Q., Kontou, S., Poulianitis, K. and Tsiakaras, "Pt-based Anode Catalysts for Direct Ethanol Fuel Cells," Solid State Ion., 175(1-4), 797-803 (2004). https://doi.org/10.1016/j.ssi.2004.09.055
  8. Fritts, S. D. and Gopal, R., "Report of the Electrolytic Industries for the Year 1992," J. Electrochem. Soc., 140(11), 3337-3341(1993). https://doi.org/10.1149/1.2221033
  9. Statti, P., Poltarzewski, Z., Alderucci, V., Maggio, G. and Giordano, N., "Solid Polymer Electrolyte Fuel Cell (SPEFC) Research and Development at the Institute CNR-TAE of Messina," Int. J. Hydrogen Energy, 19(6), 523-527(1994). https://doi.org/10.1016/0360-3199(94)90007-8
  10. Appleby, A. J., "Fuel Cell Technology and Innovation," J. Power Sources, 37(1), 223-239(1992). https://doi.org/10.1016/0378-7753(92)80080-U
  11. Park, S. J., Jung, H. J. and Na, C. H., "Adsorption Properties of Fuel-Cell Electrode Produced from Activated Carbon Fibers in Three Phase Distribution," Polym.(Korea), 27(1), 46-51(2003).
  12. Lin, C. W., Thangamuthu, R. and Yang, C. J., "Proton-conducting Membranes with High Selectivity from Phosphotungstic Acid-doped Poly(vinyl alcohol) for DMFC Applications," J. Membr. Sci., 253(1-2), 23-31(2005). https://doi.org/10.1016/j.memsci.2004.12.021
  13. Lee, C. S. and Yi, S. C., "Numerical Methodology for Proton Exchange Membrane Fuel Cell Simulation using Computational Fluid Dynamics Technique," Korean J. Chem. Eng., 21(6), 1153-1160 (2004). https://doi.org/10.1007/BF02719487
  14. Guo, J. W., Zhao, T. S., Prabhuram, J. and Wong, C. W., "Preparation and the Physical/electrochemical Properties of a Pt/C Nanocatalyst Stabilized by Citric Acid for Polymer Electrolyte Fuel Cells," Electrochim. Acta, 50(10), 1973-1983(2005). https://doi.org/10.1016/j.electacta.2004.09.006
  15. Rao, R. K. and Trivedi, D. C., "Chemical and Electrochemical Depositions of Platinum Group Metals and their Applications," Coord. Chem. Rev., 249(5-6), 613-631(2005). https://doi.org/10.1016/j.ccr.2004.08.015
  16. Kim, S. and Park, S. J., "Effect of Acid/Base Treatment to Carbon Blacks on Preparation of Carbon-Supported Platinum Nanoclusters," Electrochim. Acta., 52(9), 3013-3021(2007). https://doi.org/10.1016/j.electacta.2006.09.060
  17. Kim, S., Jung, Y. and Park, S. J., "Preparation and Electroactivities of Carbon Nanotubes-Supported Metal Catalyst Electrodes Prepared by a Potential Cycling," Carbon Lett., 10(3), 213-216 (2009). https://doi.org/10.5714/CL.2009.10.3.213
  18. Wang, H. J., Yu, H., Peng, F. and Lv, P., "Methanol Electrocatalytic Oxidation on Highly Dispersed Pt/Sulfonated-Carbon Nanotubes Catalysts," Electrochem. Commun., 8(3), 499-504(2006). https://doi.org/10.1016/j.elecom.2006.01.019
  19. Park, S. S., Rhee, J. K., Jeon, Y. K., Choi, S. W. and Shul, Y. G., "Preparation of Pt Catalysts Supported on ACF with CNF via Catalytic Growth," Carbon Lett., 11(1), 38-40(2010). https://doi.org/10.5714/CL.2010.11.1.038
  20. Kim, S and Park, S. J., "Preparation and Electrochemical Behaviors of Platinum Nanoparticles Impregnated on Binary Carbon Supports as Catalyst Electrodes of Direct Methanol Fuel Cells," J. Solid State Electrochem., 11(1), 821-828(2007). https://doi.org/10.1007/s10008-006-0228-6
  21. Kinoshita, K., Carbon: Electrochemical and Physicochemical Properties, John Wiley & Sons, New York, 31-40(1988).
  22. Arico, A. S., Srinivasan, S. and Antonucci, V., "DMFCs: From Fundamental Aspects to Technology Development," Fuel Cells, 1(2), 133-161(2001). https://doi.org/10.1002/1615-6854(200107)1:2<133::AID-FUCE133>3.0.CO;2-5
  23. Kim, S. and Park, S. J., "Effects of Chemically Modified Carbon Supports on Electrochemical Behaviors of Platinum Catalysts of Fuel Cells," J. Power Sources, 159(1), 42-45(2006). https://doi.org/10.1016/j.jpowsour.2006.04.041