• Title/Summary/Keyword: action properties

Search Result 780, Processing Time 0.029 seconds

Strength Property Improvement of OCC-based Paper by Chemical and Mechanical Treatments (III) - Handsheet physical properties - (골판지 고지의 물리화학적 처리에 의한 강도향상(제3보) - 수초지의 물리적 특성변화 -)

  • Lee, Jong-Hoon;Seo, Yung B.;Jeon, Yang;Lee, Hak-Lae;Shin, Jong-Ho
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.2
    • /
    • pp.8-15
    • /
    • 2000
  • This study is a continuation of the previous experimental analysis and is mostly focused on handsheet strength properties. Four completely different fibers, which were Hw-BKP, SW-BKP, White ledger, and OCC, were selected to investigate the effect of mechanical pre-treatment by Hobart mixer on handsheet strehgth properties. After equal time mechanical pre-treatment, the fibers were refined with laboratory valley beater for 10, 20 and 30 minutes, and handsheets were prepared from the fibers for physical strength comparison. Handsheets from SW-BKP and OCC showed 5-30% increase of breaking length, burst index, tear index, and compression index while handsheets from HW-BKP and White ledger no increase except tear index. In Hobart mixer pre-treatment, HW-BKP and White ledger fibers were easily attached to the wall of the mixer bowl and mechanical action was not effectively applied. The fiber length of Hw-BKP and White ledger were 0.837 mm and 1.591 mm, respectively, while SW-BKP and OCC were 2.744 mm and 2.033 mm, respectively, in weight weighted length. The effective mechanical pre-treatment seems to be related to the fiber length. Tear indexes of the pre-treated furnish were much higher than no pre-treatment at the same breaking length level.

  • PDF

Surface Properties of Glutathione Layer Formed on Gold Surfaces Interacting with ZrO2 (이산화지르코늄과 상호작용하는 금 표면 위의 글루타싸이온층 표면 물성)

  • Park, Jin-Won
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.538-543
    • /
    • 2014
  • It is investigated that that the physical properties of Glutathione layer formed on gold surfaces may make an effect on the distribution of either gold particle adsorbed to the $ZrO_2$ surface or vice versa with the adjustment of the electrostatic interactions. For the investigation, the atomic force microscope (AFM) was used to measure the surface forces between the surfaces as a function of the salt concentration and pH value. The forces were quantitatively analyzed with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to estimate the surface potential and charge density of the surfaces for each condition of salt concentration and pH value. The estimated-value dependence on the salt concentration was described with the law of mass action, and the pH dependence was explained with the ionizable groups on the surface. The salt concentration dependence of the surface properties, found from the measurement at pH 4 and 8, was consistent with the prediction from the law. It was found that the Glutathione layer had higher values for the surface charge densities and potentials than the zirconium dioxide surfaces at pH 4 and 8, which may be attributed to the ionized-functional-groups of the Glutathione layer.

An Isotopic Study of the Effects of Refining on Fiber

  • FRANCES L WALSH; SUJIT BANERJEE
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.31-36
    • /
    • 2006
  • Tritium has been used to directly measure the exchangeable hydrogen in bleached softwood kraft pulp. The hydrogen atoms associated with hydroxyl groups in pulp or with water contained in the pulp can dissociate and exchange with the hydrogen atoms in bulk water. Tritium is a radioactive isotope of hydrogen and behaves almost identically to it. The distribution of tritium between pulp and water ($k_{pw}$) can be easily measured and becomes an index of the protons available fur hydrogen bonding. Bleached kraft pulp was refined in a PFI mill to a range of freenesses. Tritiated water was added and the amount exchanged measured. There was a slight steady increase in $k_{pw}$ until approximately 300 CSF; $k_{pw}$ then rose sharply between 300 CSF and 100 CSF. This rise appears to correlate with FSP. It is likely that the action of refining on the fiber reaches a threshold at about 300 CSF causing the fiber surface to break open creating exponentially more surface area. This theory is visually confirmed through light microscopy. The slow increase in fibrillation of the fibers above 300 CSF correlates with the increase in $k_{pw}$. Beyond the threshold of 300 CSF a dramatic difference in fibrillation is shown, also corresponding with the large increase in $k_{pw}$. The freeness difference around 300 CSF is small, but the change in fiber properties is extreme within this region. This change in properties could lead to sheet breaks and other disruptions when producing products around the threshold. This study leads to a better understanding of how fiber changes during refining, resulting in a practical benefit of target freeness determination. Presently, freeness is selected based on product quality and on some measure of runnability. Yet, there are other considerations, demonstrated by the extreme change in fiber properties around 300 CSF.

  • PDF

A numerical and theoretical investigation on composite pipe-in-pipe structure under impact

  • Wang, Yu;Qian, Xudong;Liew, J.Y. Richard;Zhang, Min-Hong
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1085-1114
    • /
    • 2016
  • This paper investigates the transverse impact response for ultra lightweight cement composite (ULCC) filled pipe-in-pipe structures through a parametric study using both a validated finite element procedure and a validated theoretical model. The parametric study explores the effect of the impact loading conditions (including the impact velocity and the indenter shape), the geometric properties (including the pipe length and the dimensions of the three material layers) as well as the material properties (including the material properties of the steel pipes and the filler materials) on the impact response of the pipe-in-pipe composite structures. The global impact responses predicted by the FE procedure and by the theoretical model agree with each other closely. The parametric study using the theoretical approach indicates the close relationships among the global impact responses (including the maximum impact force and the maximum global displacement) in specimens with the equivalent thicknesses, proposed in the theoretical model, for the pipe-in-pipe composite structures. In the pipe-in-pipe composite structure, the inner steel pipe, together with the outer steel pipe, imposes a strong confinement on the infilled cement composite and enhances significantly the composite action, leading to improved impact resistance, small global and local deformations.

Anti Tumoral Properties of Punica Granatum (Pomegranate) Peel Extract on Different Human Cancer Cells

  • Modaeinama, Sina;Abasi, Mozhgan;Abbasi, Mehran Mesgari;Jahanban-Esfahlan, Rana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.5697-5701
    • /
    • 2015
  • Background: Medicinal plants, especially examples rich in polyphenolic compounds, have been suggested to be chemopreventive on account of antioxidative properties. Punica granatum (PG) (pomegranate) is a well known fruit in this context, but its cytotoxicity in cancer cells has not been extensively studied. Here, we investigated the antiproliferative properties of a peel extract of PG from Iran in different human cancer cells. Materials and Methods: A methanolic extract of pomegranate peel (PPE) was prepared. Total phenolic content(TPC) and total flavonoid conetnt (TFC) were determined by colorimetric assays. Antioxidant activity was determined by DPPH radical scavenging activity. The cytotoxicity of different doses of PPE (0, 5, 20, 100, 250, 500, $1000{\mu}g/ml$) was evaluated by MTT assays with A549 (lung non small cell cancer), MCF-7 (breast adenocarcinoma), SKOV3 (ovarian cancer), and PC-3 (prostate adenocarcinoma) cells. Results: Significant (P<0.01) or very significant (P<0.0001) differences were observed in comparison with negative controls at all tested doses (5-$1000{\mu}g/ml$). In all studied cancer cells, PPE reduced the cell viability to values below 40%, even at the lowest doses. In all cases, IC50 was determined at doses below $5{\mu}g/ml$. In this regard, MCF-7 breast adenocarcinoma cells were the most responsive cells to antiprolifreative effects of PPE with a maximum mean growth inhibition of 81.0% vs. 69.4%, 79.3% and 77.5% in SKOV3, PC-3 and A549 cells, respectively. Conclusions: Low doses of PPE exert potent anti-proliferative effects in different human cancer cells and it seems that MCF-7 breast adenocarcinoma cells are the most cells and SKOV3 ovarian cancer cells the least responsive in this regard. However, the mechanisms of action need to be addressed.

3,4,5-Trihydroxycinnamic Acid Inhibits Lipopolysaccharide-Induced Inflammatory Response through the Activation of Nrf2 Pathway in BV2 Microglial Cells

  • Lee, Jae-Won;Choi, Yong-Jun;Park, Jun-Ho;Sim, Jae-Young;Kwon, Yong-Soo;Lee, Hee Jae;Kim, Sung-Soo;Chun, Wanjoo
    • Biomolecules & Therapeutics
    • /
    • v.21 no.1
    • /
    • pp.60-65
    • /
    • 2013
  • 3,4,5-Trihydroxycinnamic acid (THC) is a derivative of hydroxycinnamic acids, which have been reported to possess a variety of biological properties such as anti-inflammatory, anti-tumor, and neuroprotective activities. However, biological activity of THC has not been extensively examined. Recently, we reported that THC possesses anti-inflammatory activity in LPS-stimulated BV2 microglial cells. However, its precise mechanism by which THC exerts anti-inflammatory action has not been clearly identified. Therefore, the present study was carried out to understand the anti-inflammatory mechanism of THC in BV2 microglial cells. THC effectively suppressed the LPS-induced induction of pro-inflammatory mediators such as NO, TNF-${\alpha}$, and IL-$1{\beta}$. THC also suppressed expression of MCP-1, which plays a key role in the migration of activated microglia. To understand the underlying mechanism by which THC exerts these anti-inflammatory properties, involvement of Nrf2, which is a cytoprotective transcription factor, was examined. THC resulted in increased phosphorylation of Nrf2 with consequent expression of HO-1 in a concentration-dependent manner. THC-induced phosphorylation of Nrf2 was blocked with SB203580, a p38 MAPK inhibitor, indicating that p38 MAPK is the responsible kinase for the phosphorylation of Nrf2. Taken together, the present study for the first time demonstrates that THC exerts anti-inflammatory properties through the activation of Nrf2 in BV2 microglial cells, suggesting that THC might be a valuable therapeutic adjuvant for the treatment of inflammation-related disorders in the CNS.

Strength property improvement of OCC-based paper by chemical and mechanical treatments (3 - handsheet physical properties) (골판지 고지의 물리화학적 처리에 의한 강도향상 (제3보 - 수초지의 물리적특성변화))

  • Lee, Jong-Hoon;Seo, Yung B.;Jeon, Yang;Lee, Hak-Lae;Shin, Jong-Ho
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.04a
    • /
    • pp.70-70
    • /
    • 2000
  • This study is a continuation of the previous experimental analysis and is mostly focused on handsheet strength properties. Four completely different fibers, which were Hw-BKP, Sw-BKP, white ledger, and OCC, were selected to investigate the effect of mechanical pre-treatment by Hobart mixer on handsheet strength properties. After equal time mechanical pre-treatment, the fibers were refined with laboratory valley beater for 10, 20 and 30 minutes, and handsheets were prepared from the fibers for physical strength comparison. Handsheets from SW-BKP and OCC showed 5-30% increase of breaking length, burst index, tear index, and compression index while handsheets from HW-BKP and white ledger no Increase except tear index. In Hobart mixer pre-treatment, HW-BKP and white ledger fibers were easily attached to the wall of the mixer bowl and mechanical action was not effectively applied. The fiber length of Hw-BKP and white ledger were 0.837mm and 1.591 mm, respectively, while SW-BKP and OCC were 2.744 mn and 2.033 mm, respectively, in weight weighted length. The effective mechanical pre-treatment seems to be related to the fiber length. Tear indexes of the pre-treated furnish were much higher than no pre-treatment at the same breaking length level.

  • PDF

A Study on the Evaluation of Mechanical Characteristics for Tailor Welded Blank Panel (TWB 판넬의 기계적특성 평가에 관한 연구)

  • Chun, Chang-Hwan;Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.4
    • /
    • pp.183-190
    • /
    • 2010
  • There are many methods to reduce the weight and the cost of the automobile body, among them, Tailor Welded Blank (TWB) is new welding method applied to body structure. It is necessary to evaluate mechanical properties of TWB structures or sheets for the application to automobile body parts. In this study, the stiffness of T-type and L-type joint structures, composite of TWB panel, which simplified two portions of side structure in automobile body were investigated. Additionally, the fatigue properties of TWB panels were obtained. Two types of welding technologies, laser and mash seam welding, were used to join mild panels with different thickness. This results are compared with conventional structures. The results are as follows: 1) The stiffness of joint structures, composite of TWB panel, is approximately 17% higher than that of conventional ones. 2) The location of welding line in TWB had a effect on the in plane bending stiffness, but not on the out of plane bending stiffness. 3) In terms of welding technology type, the mash seam welding show higher stiffness than the laser welding for in plane bending stiffness. But minimal differences in both types are revealed for out of plane bending stiffness. 4) The fatigue strength, composite of TWB panel, is lower than that of base steel. It is thought that defects in the welding zone had the action of notch in the fatigue test.

Evaluation of Engineering Properties in Early-Age Concrete with TDFA (TDFA를 혼입한 초기재령 콘크리트의 공학적 특성 평가)

  • Park, Jae-Sung;Park, Sang-Min;Kim, Hyeok-Jung;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.1-8
    • /
    • 2016
  • This paper presents an evaluation of engineering properties in TDFA(Tire Derived Fuel Ash)- based concrete in early age. Concrete containing 0.5 of w/b(water to binder) ratio and 20% of FA(Fly Ash) replacement ratio are prepared, and FA content are replaced with TDFA from 3% to 12% for evaluating the effect of TDFA on fresh and hardened concrete properties. With higher than 6% of TDFA replacement ratio, workability is significantly worsened but it is improved with more SP(Super plasticizer) and AE(Air Entrainer) agent. Concrete with 6~12% of TDFA shows reasonable strength development and better resistance to carbonation and chloride attack in spite of early-aged condition. However concrete with 6% TDFA shows poor resistance to freezing and thawing action due to insufficient air content. If air content and workability are obtained, replacement of TDFA to 12% can be used for concrete with FA.

Electrical properties and ATP-sensitive K+ channel density of the rat substantia nigra pars compacta neurons (랫드 흑질 신경세포의 전기적 특성과 ATP-sensitive K+채널의 전류밀도)

  • Han, Seong-kyu;Park, Jin-bong;Ryu, Pan-dong
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.2
    • /
    • pp.275-282
    • /
    • 2000
  • Substantia nigra is known to highly express glibenclamide binding site, a protein associated to ATP-sensitive $K^{+}$ ($K_{ATP}$) channel in the brain. However, the functional expression of $K_{ATP}$ channels in the area is not yet known. In this work, we attempted to estimate the functional expression of $K_{ATP}$ channels in neurons of the substantia nigra pars compacta (SNC) in young rats using slice patch clamp technique. Membrane properties and whole cell currents attributable to $K_{ATP}$ channel were examined by the current and voltage clamp method, respectively. In SNC, two sub-populations of neurons were identified. Type I (rhythmic) neurons had low frequency rebound action potentials ($4.5{\pm}0.25Hz$, n=75) with rhythmic pattern. Type II (phasic) neurons were characterized by faster firing ($22.7{\pm}3.16Hz$, n=12). Both time constants and membrane capacitance in rhythmic neurons ($34.0{\pm}1.27$ ms, $270.0{\pm}11.83$ pF) and phasic neurons ($23.7{\pm}4.16$ ms, $184{\pm}35.2$ pF) were also significantly different. The current density of $K_{ATP}$ channels was $6.1{\pm}1.47$ pA/pF (2.44~15.43 pA/pF, n=8) at rhythmic neurons of young rats. Our data show that in SNC there are two types of neurons with different electrical properties and the density of $K_{ATP}$, channel of rhythmic neuron is about 600 channels per neuron.

  • PDF