• Title/Summary/Keyword: actinobacteria

Search Result 225, Processing Time 0.032 seconds

Bacterial Community of Natural Dye Wastewater Treatment Facility (천연염색 폐수처리시설의 세균 군집)

  • Hwang, Yeoung Min;Kim, Dae Kuk;Lee, Ji Hee;Baik, Keun Sik;Park, Chul;Seong, Chi Nam
    • Journal of Life Science
    • /
    • v.24 no.4
    • /
    • pp.393-402
    • /
    • 2014
  • Culture-dependent and culture-independent denaturing gradient gel electrophoresis (DGGE) analyses were employed to investigate the bacterial community associated with a natural dye wastewater treatment facility. A total of 104 (influent water, 48 strains; aeration tank, 25; settling tank, 31) bacterial strains were isolated. Based on the 16S rRNA gene sequences comparison analysis, the isolates belonged to four phyla: Proteobacteria, Actinobacteria, Firmicutes, and Bacteriodetes. Seventeen DGGE bands representing dominant taxa in each sample were cloned and partially sequenced. The same four phyla were detected by DGGE fingerprinting. The most dominant taxon retrieved by both methods was the member of the phylum Proteobacteria with Alphaproteobacteria as the predominant class. The bacterial community associated with the natural dye wastewater treatment facility is composed of parasites of animals and plants, decomposers of polysaccharides and dyes, and producers of extracellular polysaccharides.

Characterization and phylogenetic analysis of halophilic bacteria isolated from rhizosphere soils of coastal plants in Dokdo islands (독도 해안식물로부터 분리된 호염성 세균들의 특성 및 계통학적 분석)

  • You, Young-Hyun;Park, Jong Myong;Lee, Myung-Chul;Kim, Jong-Guk
    • Korean Journal of Microbiology
    • /
    • v.51 no.1
    • /
    • pp.86-95
    • /
    • 2015
  • To study the halobacterial diversity at the rhizospheric soil of coastal plant native to Dokdo islands, several host plant were selected and its rhizospheric soil was sampled. Soil sample was diluted serially and pure isolation was done by sub-culture using marine agar media. 26 halophilic strains cultivable at the marine medium containig concentration of 9.0% sodium chloride were selected among total 161 isolates. Their partial 16S rRNA gene sequences extracted from genomic DNA were analyzed and partially identified. Furthermore, to identify their genetic relationship, phylogenetic tree was deduced. Total 26 strains were belongs to Firmicutes (30.8%), Gamma proteobacteria (53.8%), Bacteroidetes (7.7%), Alpha proteobacteria (7.7%), and Actinobacteria (7.7%). These results showed the specific difference from previous researches which has been reported the microbial flora of soil or sea water around the Dokdo islands. Furthermore, 4 among 26 halophilic strains grew at above 12.0% NaCl concentrated marine broth, and 2 strains Idiomarina abyssalis LM4H23 and Halomonas huangheensis AS4H13 grew at 15.0% concentration. These halophilic strains thought to overcoming the severe stress like high salt concentration or variation derived from Dokdo-specific climate and might have unknown, specific relationship with their host coastal plant native to Dokdo islands.

Phylogenetic Characteristics of viable but Nonculturable Bacterial Populations in a Pine Mushroom (Tricholoma matsutake) Forest Soil (송이 자생군락 토양 내 난배양성 세균군집의 계통학적 특성)

  • Kim, Yun-Ji;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.201-209
    • /
    • 2007
  • The CFDA (6-carboxyfluorescein diacetate) direct viable count method and plate count (PC) method using conventional nutrient broth (NB) medium and $10^{-2}$ diluted NB (DNB) medium were applied to samples collected from Mt. Yongdoo In Andong, in an effect to determine the number of living bacteria pine mushroom forest soil. The number of living bacteria determined via plate count in NB medium comprised $5{\sim}8%$ of the CFDA direct viable count, and the bacteria in the DNB medium comprised $40{\sim}47%$. This result indicated that viable but nonculturable (VBNC) bacteria existed in the pine mushroom forest soil at a high percentage. The phylogenetic characteristics of the VBNC bacterial populations in the samples of pine mushroom (Tricholoma matsutake) forest soil were analyzed via the direct extraction of DNA and 16S rDNA-ARDRA. The 115 clones from pine mushroom forest soil were clustered into 31 different RFLP phylotypes by ARDRA. Based on the 16S rDNA sequences, the 31 ARDRA clusters were classified into 6 phylogenetic groups: ${\alpha}-,\;{\beta}-,\;{\gamma}-Proteobacteria$, Acidobacteria, Actinobacteria and Firmicutes. Among these bacterial populations, approximately 85% were classified as members of phylum Acidobacteria. The Acidobacteria phylum was shown to exist abundantly in the pine mushroom forest soil.

Comparison of the Phylogenetic Diversity of Humus Forest Soil Bacterial Populations via Different Direct DNA Extyaction Methods (DNA 직접추출법에 따른 산림토양 부식층 내 세균군집의 계통학적 다양성 비교)

  • Son, Hee-Seong;Han, Song-Ih;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.210-216
    • /
    • 2007
  • The principal objective of this study was to analyze 16S rDNA-ARDRA of the humus forest soil via an improved manual method and an ISOIL kit on the basis of the UPGMA clustering of the 16S rDNA combined profile, 44 ARDRA clusters of 76 clones via the ISOIL kit method and 45 ARDRA clusters of 136 clones via the improved manual method. On the basis of the 16S rDNA sequences, 44 clones from the ARDRA clusters by the ISOIL kit were classified into 3 phyla : ${\alpha}-,\;{\beta}-,\;{\gamma}-,\;{\delta}-Proteobacteria$, Acidobacteria and Actinobacteria. Using the improved manual method, the specimens were classified into 6 phyla : the ${\alpha}-,\;{\beta}-,\;{\gamma}-,\;{\delta}-Proteobacteria$, Acidobacteria, Bacteroides, Verrucomicrobia, Planctomycetes and Gemmatomonadetes. As a result, the modified manual method indicated greater phylogenetic diversity than was detected by the ISOIL kit. Approximately 40 percent of the total clones were identified as ${\alpha}-Proteobacteria$ and 30 percent of the total clones were ${\gamma}-Proteobacteria$ and assigned to dominant phylogenetic groups using the ISOIL kit. Using the modified manual method, 41 percent of the total clones were identified as Acidobacteria and 28 percent of total clones were identified as ${\alpha}-proteobacteria$ and assigned to dominant phylogenetic groups.

Analysis of Rhizosphere Soil Bacterial Communities on Seonginbong, Ulleungdo Island (울릉도 성인봉의 근권 토양 세균군집 분석)

  • Nam, Yoon-Jong;Yoon, Hyeokjun;Kim, Hyun;Kim, Jong-Guk
    • Journal of Life Science
    • /
    • v.25 no.3
    • /
    • pp.323-328
    • /
    • 2015
  • The study of microbial diversity and richness in soil samples from a volcanic island named Ulleungdo, located east of South Korea. The soil bacterial communities on the Ulleungdo were analyzed using pyrosequencing method based on 16S rRNA gene. There were 1,613 operational taxonomic units (OUT) form soil sample. From results of a BLASTN search against the EzTaxon-e database, the validated reads (obtained after sequence preprocessing) were almost all classified at the phylum level. Proteobacteria was the most dominant phylum with 48.28%, followed by acidobacteria (26.30%), actionbacteria (6.89%), Chloroflexi (4.58), Planctomycetes (4.56%), Nitrospirae (1.83%), Bacteroidetes (1.51%), Verrucomicrobia (1.48%), and Gemmatimonadetes (1.11%). α-proteobacteria was the most dominant class with 36.07% followed by Acidobacteria_c (10.65%), Solibacteres (10.64%), δ-proteobacteria (4.42%), γ-proteobacteria (4.29%), Planctomycetacia (4.16%), Actinobacteria_c (4.00%), Betaproteobacteria (3.50%), EU686603_c (2.97%), Ktedonobacteria (2.91%), Acidimicrobiia (1.32%), Verrucomicrobiae (1.27%), Gemmatimonadetes_c (1.11%), Sphingobacteria (1.09%), and GU444092_c (1.06%). Bradyrhizobiaceae was the most dominant family with 22.83% followed by Acidobacteriaceae (10.62%), EU445199_f (5.72%), Planctomycetaceae (4.03%), Solibacteraceae (3.63%), FM209092_f (3.58%), Steroidobacter_f (2.81%), EU686603_f (2.73%), Hyphomicrobiaceae (2.33%), Ktedonobacteraceae (1.75%), AF498716_f (1.46%), Rhizomicrobium_f (1.03%), and Mycobacteriaceae (1.01%). Differences in the diversity of bacterial communities have more to do with geography than the impact on environmental factors and also the type of vegetation seems to affect the diversity of bacterial communities.

Diversity and Phylogenetic Analysis of Culturable Marine Bacteria Isolated from Rhizosphere Soils of Suaeda japonica Makino in Suncheon Bay (순천만 칠면초의 근권으로부터 분리된 해양세균의 다양성 및 계통학적 분석)

  • You, Young-Hyun;Park, Jong Myong;Nam, Yoon-Jong;Kim, Hyun;Lee, Myung-Chul;Kim, Jong-Guk
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.189-196
    • /
    • 2015
  • Bacterial diversity was studied in the rhizosphere of Suaeda japonica Makino, which is native to Suncheon Bay in South Korea. Soil samples from several sites were diluted serially, and pure isolation was performed by subculture using marine agar and tryptic soy agar media. Genomic DNA was extracted from 29 pure, isolated bacterial strains, after which their 16S rDNA sequences were amplified and analyzed. Phylogenetic analysis was performed to confirm their genetic relationship. The 29 bacterial strains were classified into five groups: phylum Firmicutes (44.8%), Gamma proteobacteria group (27.6%), Alpha proteobacteria group (10.3%), phylum Bacteriodetes (10.3%), and phylum Actinobacteria (6.8%). The most widely distributed genera were Bacillus (phylum Firmicutes), and Marinobacterium, Halomonas, and Vibrio (Gamma proteobacteria group). To confirm the bacterial diversity in rhizospheres of S. japonica, the diversity index was used at the genus level. The results show that bacterial diversity differed at each of the sampling sites. These 29 bacterial strains are thought to play a major role in material cycling at Suncheon Bay, in overcoming the sea/mud flat-specific environmental stress. Furthermore, some strains are assumed to be involved in a positive interaction with the halophyte S. japonica, as rhizospheric flora, with induction of growth promotion and plant defense mechanism.

Phylogenetic Diversity and Community Structure of Microbiome Isolated from Sargassum Horneri off the Jeju Island Coast (제주 연안의 괭생이모자반(Sargassum horneri)에서 분리된 세균의 계통학적 다양성 및 군집 구조 분석)

  • Moon, Kyung-Mi;Park, So-Hyun;Heo, Moon-Soo
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1179-1185
    • /
    • 2018
  • Recently, Sargassum horneri, the marine weed inhabiting the shoreline, beach, and littoral sea area, has caused serious damage to intensive aquaculture farms particularly those around Jeju Island, South Korea. The purpose of this study was to investigate the diversity of microorganisms in Sargassum horneri and to provide basic data on ecological problems by identifying microbial functions. A total of 88 isolates were identified by 16S rRNA sequencing. Proteobacteria was the dominant phylum accounting for 88%, including class ${\alpha}-proteobacteria$, six genera, and ten species. The dominating genus, Pseudobacter, accounted for 40% in Pseudorhodobacter, 20% in Paracoccus, and the remaining at 10% each were Rhizobium, Albirhodobacter, Skermanella, and Novosphingobium. Class ${\beta}-proteobactera$ included five genera and ten species. Genus Hydrogenophaga accounted for 50%, while genus Azoarcus accounted for 20%, and the remaining Oxalicibacterium, Duganella, and Xenophilus were 10% each. Class ${\gamma}-proteobacteria$ with 13 genera and 57 species, accounted for 74% in phylum Proteobacteria, 23% in Shewanella, 19% in Cobetia, 12% in Pseudomonas, 4% each in Vibrio and Serratia, and 2% each in Rheinheimera, Raoultella, Pantoea, Acinetobacter, Moraxella, and Psychrobacter genera. In addition, Actinobacteria with two species of Nocardioides genera accounted for 50%, and Bacteroidetes accounted for 33%, with three genera and five species that included Lacihabitans and Mariniflexile. The remaining Dyadobacter, Cellulophaga, and Ferruginibacter genera each accounted for 11%.

Effects of Transgenic Soybean Cultivation on Soil Microbial Community in the Rhizosphere (형질전환 콩 재배가 근권 토양 미생물상에 미치는 영향)

  • Lee, Ki-Jong;Sohn, Soo-In;Lee, Jang-Yong;Yi, Bu-Young;Oh, Sung-Dug;Kweon, Soon-Jong;Suh, Seok-Choel;Ryu, Tae-Hun;Kim, Kyung-Hwan;Park, Jong-Sug
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.466-472
    • /
    • 2011
  • BACKGROUND: Soybean [Glycine max (L.) Merrill] is a legume and an important oil crop worldwide. This study was conducted to evaluate the possible impact of transgenic soybean cultivation on the soil microbial community. METHODS AND RESULTS: Microorganisms were isolated from the rhizosphere soils. Microbial community was identified based on the culture-dependent and molecular biology methods. The total numbers of bacteria, fungi, and actinomycete in the rhizosphere soils cultivated with transgenic and non-transgenic soybeans were similar to each other, and there was no significant difference between transgenic and non-transgenic soybeans. Dominant bacterial phyla in the rhizosphere soils cultivated with transgenic or non-transgenic soybeans were Actinobacteria, Firmicutes, and Proteobacteria. The microbial communities in transgenic and non-transgenic soybean soils were characterized using the denaturing gradient gel electrophoresis (DGGE). The DGGE profiles showed the different patterns, but didn't show significant difference to each other at 0.05 significance level. DNAs were isolated from soils cultivating transgenic or non-transgenic soybeans and analyzed for persistence of transgenes in the soil by using PCR. PCR analysis revealed that there were no amplified ${\gamma}$-tmt and bar gene in soil DNA. CONCLUSION(S): The results of this study suggested that microbial community of soybean field were not significantly affected by cultivation of the transgenic soybeans.

Investigation of Microbial Communities in Sulculus diversicolor supertexta Through 16S rRNA Sequencing and Antibacterial Monitoring of Harmful Strains (16S rRNA 염기서열 분석을 통한 오분자기(Sulculus diversicolor supertexta)내 미생물 군집 조사 및 인체유해 질병세균에 대한 항균활성 모니터링)

  • Kim, Min-Seon;Lee, Seung-Jong;Heo, Moon-Soo
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1477-1488
    • /
    • 2018
  • This study investigated the muscles, intestines, and gonads of Sulculus diversicolor supertexta to examine the diversity of microbial communities within examples collected from the Jeju Coast. Using different media, initial pure isolation in MA, 1% BHIA, and 1% TSA indicated that the muscles, intestines, and gonads supported more communities, respectively. In analysis of relative similarity with 16s rRNA sequencing, 190 pure colonies were isolated, and further analysis with NBLAST identified 71 species, 39 genera, 25 families, and five phyla. Homogeny with the reference strain was 91-100%. Microbial communities in S. supertexta consisted of gamma and alpha Proteobacteria (48%), Actinobacteria (32.5%), Firmicutes (16.9%), Deinococcus-Thermus (1.3%), and Bacteroides (1.3%). In all tissue, Psychrobacter cibarius in Moraxellaceae was dominant. Alteromonadaceae, Enterobacteriaceae, Pasturellaceae, Moraxellaceae, Rhodobacteraceae, Geminicoccaceae, Dietziaceae, Intrasporangiaceae, Microbacteriaceae, Micrococcaceae, Micromonosporaceae, Streptomycetaceae, Aerococcaceae, Bacillaceae, Paenibacillaceae, Planococcaceae, and Staphylcoccaceae were commonly isolated across all tissues, and Flavobacteriaceae, Corynebacteriaceae, Yesiniaceae, Vibrionaceae, Hahellaceae, Pseudomonadaceae were also identified from the intestines. In microbial monitoring of four harmful bacteria, Streptomyces albus (96%) showed antibacterial activity against all four strains, and Agrococcus baldri (99%) and Psychrobacter nivimaris (99%) presented against E. Coli and E. aerogens. In addition, some strains with low homogeny were isolated and further experiments are therefore required, for example to refine the antimicrobial substances including new strain investigations. These additional experiments would aim to establish generic resources for the microbial communities in S. Supertexta and provide basic data for applied microbiological research.

Analysis of Intestinal Microbial Communities of Topshell (Turbo cornutus) fromCoast of Jeju Island, Korea by 16S rDNA Sequence Analysis (16S rDNA 염기서열 분석을 통한 제주연안 소라(Turbo cornutus) 장내세균 다양성 조사)

  • Kim, Min-Sun;Han, Song-Hun;Choi, Jung Hwa;Heo, Moon Soo;Ko, Jun-Chul
    • Journal of Life Science
    • /
    • v.32 no.9
    • /
    • pp.721-728
    • /
    • 2022
  • This study investigated the diversity of intestinal microbial communities isolated from the intestine of topshell (Turbo cornutus) from the coast of Jeju Island (Beobhwan, Seogwipo city). Pure cultivation using the standard marine agar (MA) medium showed the most significant number of clusters. Aerobic and anaerobic culture allowed isolation of strains of 1.8×105 CFU·g-1 and 0.4×10 CFU·g-1 on average, respectively. The microbial population in the topshell intestine was classified into 4 phyla, 12 families, 26 genera, and 67 species. The microbes in the topshell intestine were detected by homology with 93~100% with standard strains. The microbes in the topshell intestine consisted of Proteobacteria 39%, Firmicutes 34%, Actinobacteria 21%, and Bacteroidets 6%. The identified families were Alteromonadaceae (1), Shewanellaceae (4), Vibrionaceae (12), Phyllobacteriaeceae (1), Rhodobacteraceae (8), Bacillaceae (21), Paenibacillaceae (2), Cellulomonadaceae (1), Mycobacteriaceae (6), Nocardiaceae (4), Streptomycetaceae (3) and Flavobacteriaceae (4). Bacillus sp. and Vibrio sp. accounted for the greatest portion of the separated strains. Among the isolated microorganisms, some strains had probiotic functions.