Browse > Article
http://dx.doi.org/10.5352/JLS.2015.25.3.323

Analysis of Rhizosphere Soil Bacterial Communities on Seonginbong, Ulleungdo Island  

Nam, Yoon-Jong (Department of Life Sciences and Biotechnology, Kyungpook National University)
Yoon, Hyeokjun (Department of Life Sciences and Biotechnology, Kyungpook National University)
Kim, Hyun (Department of Life Sciences and Biotechnology, Kyungpook National University)
Kim, Jong-Guk (Department of Life Sciences and Biotechnology, Kyungpook National University)
Publication Information
Journal of Life Science / v.25, no.3, 2015 , pp. 323-328 More about this Journal
Abstract
The study of microbial diversity and richness in soil samples from a volcanic island named Ulleungdo, located east of South Korea. The soil bacterial communities on the Ulleungdo were analyzed using pyrosequencing method based on 16S rRNA gene. There were 1,613 operational taxonomic units (OUT) form soil sample. From results of a BLASTN search against the EzTaxon-e database, the validated reads (obtained after sequence preprocessing) were almost all classified at the phylum level. Proteobacteria was the most dominant phylum with 48.28%, followed by acidobacteria (26.30%), actionbacteria (6.89%), Chloroflexi (4.58), Planctomycetes (4.56%), Nitrospirae (1.83%), Bacteroidetes (1.51%), Verrucomicrobia (1.48%), and Gemmatimonadetes (1.11%). α-proteobacteria was the most dominant class with 36.07% followed by Acidobacteria_c (10.65%), Solibacteres (10.64%), δ-proteobacteria (4.42%), γ-proteobacteria (4.29%), Planctomycetacia (4.16%), Actinobacteria_c (4.00%), Betaproteobacteria (3.50%), EU686603_c (2.97%), Ktedonobacteria (2.91%), Acidimicrobiia (1.32%), Verrucomicrobiae (1.27%), Gemmatimonadetes_c (1.11%), Sphingobacteria (1.09%), and GU444092_c (1.06%). Bradyrhizobiaceae was the most dominant family with 22.83% followed by Acidobacteriaceae (10.62%), EU445199_f (5.72%), Planctomycetaceae (4.03%), Solibacteraceae (3.63%), FM209092_f (3.58%), Steroidobacter_f (2.81%), EU686603_f (2.73%), Hyphomicrobiaceae (2.33%), Ktedonobacteraceae (1.75%), AF498716_f (1.46%), Rhizomicrobium_f (1.03%), and Mycobacteriaceae (1.01%). Differences in the diversity of bacterial communities have more to do with geography than the impact on environmental factors and also the type of vegetation seems to affect the diversity of bacterial communities.
Keywords
Bacterial communities; pyrosequencing; Seonginbong; Ulleungdo;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R. and Hartmann, M. et al. (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537-7541.   DOI
2 Minamisawa, K., Seki, T., Onodera, S., Kubota, M., and Asami, T. 1992. Genetic relatedness of Bradyrhizobium japonicum field isolates as revealed by repeated sequences and various other characteristics. Appl. Environ. Microbiol. 58, 2832-2839.
3 Panaro, N. J., Yuen, P. K., Sakazume, T., Fortina, P., Kricka, L. J. and Wildind, P. 2000. Evaluation of DNA fragment sizing and quantification by the agilent 2100 bioanalyzer. Clin. Chem. 46, 1851-1853.
4 Park, E. J., Chun, J., Cha, C. J., Park, W. S., Jeon, C. O. and Bae, J. W. 2012. Bacterial community analysis during fermentation of ten representative kinds of kimchi with barcoded pyrosequencing. Food Microbiol. 30, 197-204.   DOI   ScienceOn
5 Shokralla, S., Spall, J. L., Gibson, J. F. and Hajibabaei, M. 2012. Next-generation sequencing technologies for environmental DNA research. Mol. Ecol. 21, 1794-1805.   DOI   ScienceOn
6 Streit, W. R. and Schmitz, R. A. 2004. Metagenomics-the key to the uncultured microbes. Curr. Opin. Microbiol. 7, 492-498.   DOI
7 Takeuchi, M., Sakane, T., Yanagi, M., Yamasato, K., Hamana, K. and Yokota, A. 1995. Taxonomic study of bacteria isolated from plants: proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., Sphingomonas asaccharolytica sp. nov., and Sphingomonas mali sp. nov. Int. J. Sys. Bacteriol. 45, 334-341.   DOI
8 Wang, Y. and Qian, P. Y. 2009. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One 4, e7401.   DOI
9 Kim, Y. E., Yoon, H., Kim, M., Nam, Y. J., Kim, H., Seo, Y., Lee, G. M., Kim, Y. J., Kong, W. S., Kim, J. G. and Seu, Y. B. 2014. Metagenomic analysis of bacterial communities on Dokdo Island. J. Gen. Appl. Microbiol. 60, 65-74   DOI
10 Hong, S. W., Lee, J. S. and Chung, K. S. 2011. Polymerase chain reaction-denaturing gradient gel electrophoresis analysis of bacterial community structure in the food, intestines, and feces of earthworms. J. Microbiol. 49, 544-550.   DOI
11 Islam, E. and Sar, P. 2011. Culture-dependent and -independent molecular analysis of the bacterial community within uranium ore. J. Basic Microbiol. 51, 372-384   DOI   ScienceOn
12 Kim, O. S., Cho, Y. J., Lee, K., Yoon, S. H., Kim, M., Na, H., Park, S. C., Jeon, Y. S., Lee, J. H., Yi, H., Won, S. and Chun, J. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716-721.   DOI
13 Lee, J. H., Cho, H. J., Lee, B. C., Oh, S. H. and Bae, K. H. 2007. Forest vegetation types and growth characteristics of Seongin-bong in Ulleung Island, Korea. Kor. J. Agric. For. Meteorol. 9, 37-48.   DOI
14 Li, A., Chu, Y., Wang, X., Ren, L., Yu, J., Liu, X., Yan, J., Zhang, L., Wu, S. and Li, S. 2013. A pyrosequencing-based metagenomic study of methane-producing microbial community in solid-state biogas reactor. Biotechnol. Biofuels 6, 3.   DOI
15 Li, W. and Godzik, A. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658-1659.   DOI
16 Li, X., Yu, Y., Feng, W., Yan, Q. and Gong, Y. 2012. Host species as a strong determinant of the intestinal microbiota of fish larvae. J. Microbiol. 50, 29-37.   DOI
17 Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403-410.   DOI
18 Brockwell, J., Holliday, R. A., and Pilka, A. 1988. Evaluation of the symbiotic nitrogen-fixing potential of soils by direct microbiological means. Plant Soil 108, 163-170.   DOI
19 Amann, R. I., Ludwig, W. and Schleifer, K. H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143-169.
20 Brockwell, J. 2004. Abundant, cheap nitrogen for Australian farmers: a history of Australian nodulation and nitrogen fixation conferences. Soil Biol. Biochem. 36, 1195-1204.   DOI
21 Chun, J., Lee, J. H., Jung, Y., Kim, M., Kim, S., Kim, B. K. and Lim, Y. W. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57, 2259-2261.   DOI
22 Gilles, A., Meglécz, E., Pech, N., Ferreira, S., Malausa, T. and Martin, J. F. 2011. Accuracy and quality assessment of 454 GS-FLX Titanium pyrosequencing. BMC Genomics 12, 245.   DOI
23 Handelsman, J. 2004. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68, 669-685.   DOI
24 Heck, K. L., Van Belle, G. and Simberloff, D. 1975. Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56, 1459-1461.   DOI   ScienceOn