• Title/Summary/Keyword: acryl resin

Search Result 63, Processing Time 0.024 seconds

Effect of polymerization temperature on the mechanical properties of provisional prosthesis resins (중합 온도가 임시 보철용 수지의 기계적 성질에 미치는 영향)

  • Hong, Min-Ho;Ha, Jung-Yun;Kwon, Tae-Yub
    • Korean Journal of Dental Materials
    • /
    • v.44 no.4
    • /
    • pp.311-318
    • /
    • 2017
  • The purpose of this study was to examine the effects of the curing sequence and polymerization temperature on the flexural strength and microhardness of two provisional resins (Bis-acryl resin composite and polymethyl methacrylate (PMMA)). Polymerization was carried out under various conditions, in air at $25^{\circ}C$ (control) and in hot water (40, 50, 60, 70, and $80^{\circ}C$). The flexural strength test was conducted according to ISO-4049. The Knoop hardness was measured. For the Bis-acryl resin, the temperature up to $50^{\circ}C$ did not increase the flexural strength nor the hardness of the bis-acryl resin composite (p>0.05) but higher temperatures increased the strengths. For the PMMA resin, flexural strength increased with temperatures up to $70^{\circ}C$ and then decreased slightly. Bis-acryl resin composite had higher mechanical properties than the PMMA resin. The effect of heat was more pronounced in the bis-acryl resin composite than in the PMMA resin (p<0.05).

Fabrication and characterization of photocurable inorganic-organic hybrid materials using organically modified colloidal-silica nanoparticles and acryl resin

  • Kang, Dong-Jun;Han, Dong-Hee;Kang, Young-Taec;Kang, Dong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.422-422
    • /
    • 2009
  • Photocurable inorganic-organic hybrid materials were prepared from colloidal-silica nanoparticles synthesized through the solgel process and using acryl resin. The synthesized colloidal-silica nanoparticles had uniform diameters of around 20 nm, and they were organically modified, using methyl and methacryl functional silanes, for efficient hybridization with acryl resin. The organically modified and stabilized colloidal-silica nanoparticles could be homogeneously hybridized with aeryl resin without phase separation. The successfully fabricated hybrid materials exhibit efficient photocurability and simple film formation due to the photopolymerization of the organically modified colloidal-silica nanoparticles and acryl resin upon UV exposure. The fabricated hybrid films exhibit an excellent optical transmission of above 90% in the visible region as well as an enhanced surface smoothness of around 1 nm RMS roughness. In addition, the hybrid films exhibit improved thermal and mechanical characteristics, much better than those of acryl resin. More importantly, these photocurable hybrid materials fabricated through the synergistic combination of colloidal-silica nanoparticles with acryl resin are candidates for optical and electrical applications.

  • PDF

The effect of different fiber reinforcements on flexural strength of provisional restorative resins: an in-vitro study

  • Kamble, Vaibhav Deorao;Parkhedkar, Rambhau D.;Mowade, Tushar Krishnarao
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • PURPOSE. The aim of this study was to compare the flexural strength of polymethyl methacrylate (PMMA) and bis-acryl composite resin reinforced with polyethylene and glass fibers. MATERIALS AND METHODS. Three groups of rectangular test specimens (n = 15) of each of the two resin/fiber reinforcement were prepared for flexural strength test and unreinforced group served as the control. Specimens were loaded in a universal testing machine until fracture. The mean flexural strengths (MPa) was compared by one way ANOVA test, followed by Scheffe analysis, using a significance level of 0.05. Flexural strength between fiber-reinforced resin groups were compared by independent samples t-test. RESULTS. For control groups, the flexural strength for PMMA (215.53 MPa) was significantly lower than for bis-acryl composite resin (240.09 MPa). Glass fiber reinforcement produced significantly higher flexural strength for both PMMA (267.01 MPa) and bis-acryl composite resin (305.65 MPa), but the polyethylene fibers showed no significant difference (PMMA resin-218.55 MPa and bis-acryl composite resin-241.66 MPa). Among the reinforced groups, silane impregnated glass fibers showed highest flexural strength for bis-acryl composite resin (305.65 MPa). CONCLUSION. Of two fiber reinforcement methods evaluated, glass fiber reinforcement for the PMMA resin and bis-acryl composite resin materials produced highest flexural strength. Clinical implications. On the basis of this in-vitro study, the use of glass and polyethylene fibers may be an effective way to reinforce provisional restorative resins. When esthetics and space are of concern, glass fiber seems to be the most appropriate method for reinforcing provisional restorative resins.

Bonding of conventional provisional resin to 3D printed resin: the role of surface treatments and type of repair resins

  • Lim, Na-Kyung;Shin, Soo-Yeon
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.5
    • /
    • pp.322-328
    • /
    • 2020
  • PURPOSE. This study evaluated the shear bond strength between 3D printed provisional resin and conventional provisional resin depending on type of conventional provisional resin and different surface treatments of 3D printed resin. MATERIALS AND METHODS. Ninety-six disc-shaped specimens (Ø14 mm × 20 mm thickness) were printed with resin for 3D printing (Nextdent C&B, Vertex-Dental B. V., Soesterberg, Netherlands). After post-processing, the specimens were randomly divided into 8 groups (n=12) according to two types of conventional repair resin (methylmethacrylate and bis-acryl composite) and four different surface treatments: no additional treatment, air abrasion, soaking in methylmethacrylate (MMA) monomer, and soaking in MMA monomer after air abrasion. After surface treatment, each repair resin was bonded in cylindrical shape using a silicone mold. Specimens were stored in 37℃ distilled water for 24 hours. The shear bond strength was measured using a universal testing machine at a crosshead speed of 0.5 mm/min. Failure modes were analyzed by scanning electron microscope. Statistical analysis was done using one-way ANOVA test and Kruskal-Wallis test (α=.05). RESULTS. The group repaired with bis-acryl composite without additional surface treatment showed the highest mean shear bond strength. It was significantly higher than all four groups repaired with methylmethacrylate (P<.05). Additional surface treatments, neither mechanical nor chemical, increased the shear bond strength within methylmethacrylate groups and bis-acryl composite groups (P>.05). Failure mode analysis showed that cohesive failure was most frequent in both methylmethacrylate and bis-acryl composite groups. CONCLUSION. Our results suggest that when repairing 3D printed provisional restoration with conventional provisional resin, repair with bis-acryl composite without additional surface treatment is recommended.

A study on the shear bond strength between 3D printed resin and provisional resin after thermal cycling (3D 프린팅 레진과 임시 수복용 레진의 열순환 처리 후 전단결합강도에 관한 연구)

  • Yim, Ji-Hun;Shin, Soo-Yeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.3
    • /
    • pp.101-110
    • /
    • 2021
  • Purpose: In this study, we intended to study the change in bond strength according to the thermal cycling of provisional resin and 3D printed resin for making provisional restoration. Materials and Methods: Through DLP method, 3D printed resin powder was used to produce 3D printed resin samples. The samples were grouped into eight groups, according to types of provisional resin (PMMA, bis-acryl resin) which is to be bonded on the samples and numbers of thermal cycling (control, 2,000, 3,000, 5,000 cycles). Shear bond strength of the bonded samples was measured on the universal testing machine. Results: As the number of thermal cycling increased, the shear bond strength of PMMA and bis-acryl resin for 3D printed resins decreased except between 3,000 cycles and 5,000 cycles in PMMA groups. In the PMMA group, there were significant differences in shear bond strength between less number than 3,000 cycles (P < 0.05) and no significant differences between more number than 3,000 cycles (P > 0.05). In the bis-acryl resin group, there were significant differences in shear bond strength between control and 2,000 cycles, control and 3,000 cycles, and control and 5,000 cycles (P < 0.05), no significant difference between 2,000 and 3,000 cycles, between 3,000 and 5,000 cycles (P > 0.05). Conclusion: The shear bond strength between 3D printed resin and provisional resin tended to decrease after thermal cycling.

Synthesis and PSA Properties of Acryl Modified Resin for Semiconductor Wafer (반도체 웨이퍼용 아크릴 변성 수지의 합성 및 점착 특성)

  • Sim, Jong Bae;Shin, Kyoung Sub;Hwang, Taek Sung
    • Journal of Adhesion and Interface
    • /
    • v.11 no.2
    • /
    • pp.63-69
    • /
    • 2010
  • In this study, acryl resin PSA containing hydroxyl group based on 2-EHA (2-ethyl hexyl acrylate), 2-EHMA (2-ethyl hexyl methacrylate), 2-HEA (2-Hydroxy ethyl acrylate), acrylic acid was synthesized and then, isocyanate modified acryl resin PSA prepared with adduct reaction according to the amount of MOI (Methacryloyloxyethyl isocyanate) or 2-isocyanatoethyl methacrylate that can improve the curing property. This research shows that the initial PSA and peel adhesion are decreased according to the increase of the amount of the MOI and isocyanate curing agent. After UV irradiating, the peel adhesion is decreased with increasing the amount of the MOI (Methacryloyloxyethyl isocyanate) and isocyanate curing agent, because of the high curing property.

Effect of delayed time, surface treatment, and repair material on shear bond strength of repaired bis-acryl composite resin (수리된 비스 아크릴 복합 레진의 전단결합강도에 대한 지연시간, 표면처리, 수리 재료의 영향)

  • Park, Ji-su;Lee, Jae-In
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.2
    • /
    • pp.89-96
    • /
    • 2018
  • Purpose: The aim of this study was to evaluate the effect of delayed time, surface treatment, and repair materials on repair of bis-acryl composite resin through comparison of shear bond strength and to evaluate the utility of bis-acryl composite resin repair using polymethyl methacrylate resin. Materials and Methods: A total of 90 bis-acryl composite resin specimens were fabricated and classified into 9 test groups, each of 10 pieces according to delayed time, surface treatment and repair material. The shear bond strength of each specimen was measured using a universal testing machine immediately after fabrication and analyzed using a statistical analysis program (IBM SPSS statistics 20). After the shear bond strength measurement, the fracture surface of the specimen was observed. Results: The highest shear bond strength ($17.54{\pm}3.14MPa$) was observed in the experimental group bonded immediately with a light-curing flowable composite resin using a bonding agent. Conclusion: When repairing bis-acryl composite resin, it is necessary to consider whether to remake according to the delayed time. For effective repair, it is desirable to consider appropriate materials and surface treatment methods according to the site or purpose of use.

The Bending Performances of Sloped Finger-Jointed Rhus verniciflua (옻나무 경사핑거접합재의 휨강도성능)

  • 변희섭;이원희;홍병화
    • Journal of the Korea Furniture Society
    • /
    • v.10 no.1
    • /
    • pp.65-71
    • /
    • 1999
  • The bending performance of sloped finger-jointed Rhus verniciflua were tested in order to improve the strength properties of finger-joint. Sloped finger-cut pieces were jointed with three kinds of adhesives (polyvinyl acetate, polyvinyl-acryl acetate and oilic resin). The slope ratios of finger joints were 0, 1.0, 1.5, and 2.0. The MOE, MOR and deflection to maximum load in bending of sloped finger-joints and solid wood specimen were measured. The results were : 1) The efficiencies of MOE to finger and sloped finger-joints to the solid wood were almost same in the three kinds of adhesives(polyvinyl acetate, polyvinyl-acryl acetate and oilic urethane resin) and there were some effect of slope on the MOE in a sloped finger-joint for three kinds of resin adhesives. 2) There was the effect of slope on the MOR in sloped finger-joints in every kind of adhesive. The efficiencies of MOR in slope ratios of 0 and 2.0 ranged 65-79%, respectively. There was also a slight effect of the kinds of adhesives on the MOR. However, the efficiencies of deflection to the urethane resin adhesive were much less than those of polyvinyl acetate, polyvinyl-acryl acetate resin adhesives except the slope ratio of 0. 3) It might be impossible to estimate the bending stregth of sloped finger-jointed Rhus verniciflua by using MOE. The correlation coefficient(0.192) between MOE was very low and not significant at 5% level.

  • PDF

Study on Adhesion Characteristics for Acryl Emulsion with Adjunction Method of Tackifier (점착부여제 투입 방법에 따른 아크릴 에멀젼의 점착 특성 연구)

  • Jeong, Booyoung;Chun, Jeahwan;Cheon, Jungmi;Park, Giho
    • Journal of Adhesion and Interface
    • /
    • v.13 no.2
    • /
    • pp.89-93
    • /
    • 2012
  • In this study, the properties of acryl emulsion with adjunction procedures of tackifier resin and tackifier emulsion were investigated. Glass transition temperature of acryl emulsions was increased with the content of tackifiers. The initial strength showed the maximum value when the contents of tackifier resin and tackifier emulsion were 10 phr and 15 phr, respectively. Additionally, the strengths on heat and water resistances were increased with the contents of tackifier.

Comparison of fracture strength, surface hardness, and color stain of conventionally fabricated, 3D printed, and CAD-CAM milled interim prosthodontic materials after thermocycling

  • Mesut Yildirim;Filiz Aykent;Mahmut Sertac Ozdogan
    • The Journal of Advanced Prosthodontics
    • /
    • v.16 no.2
    • /
    • pp.115-125
    • /
    • 2024
  • PURPOSE. The purpose of this in vitro study was to investigate the fracture resistance, surface hardness, and color stain of 3D printed, CAD-CAM milled, and conventional interim materials. MATERIALS AND METHODS. A total of 80 specimens were fabricated from auto polymerizing polymethyl methacrylate (PMMA), bis-acryl composite resin, CAD-CAM polymethyl methacrylate resin (milled), and 3D printed composite resin (printed) (n = 20). Forty of them were crown-shaped, on which fracture strength test was performed (n = 10). The others were disc-shaped specimens (10 mm × 2 mm) and divided into two groups for surface hardness and color stainability tests before and after thermal cycling in coffee solution (n = 10). Color parameters were measured with a spectrophotometer before and after each storage period, and color differences (CIEDE2000 [DE00]) were calculated. The distribution of variables was measured with the Kolmogorov Smirnov test, and one-way analysis of variance (ANOVA), Tukey HSD, Kruskal-Wallis, Mann-Whitney U tests were used in the analysis of quantitative independent data. Paired sample t-test was used in the analysis of dependent quantitative data (P < .05). RESULTS. The highest crown fracture resistance values were determined for the 3D printed composite resin (P < .05), and the lowest were observed in the bis-acryl composite resin (P < .05). Before and after thermal cycling, increase in mean hardness values were observed only in 3D printed composite resin (P < .05) and the highest ΔE00 value were observed in PMMA resin for all materials (P < .05). CONCLUSION. 3D printing and CAD-CAM milled interim materials showed better fracture strength. After the coffee thermal cycle, the highest surface hardness value was again found in 3D printing and CAD-CAM milled interim samples and the color change of the bis-acryl resin-based samples and the additive production technique was higher than the PMMA resin and CAD-CAM milled resin samples.