DOI QR코드

DOI QR Code

Comparison of fracture strength, surface hardness, and color stain of conventionally fabricated, 3D printed, and CAD-CAM milled interim prosthodontic materials after thermocycling

  • Mesut Yildirim (Duacinari Oral and Tooth Health Hospital Bursa) ;
  • Filiz Aykent (Department of Prosthodontics, Faculty of Dentistry, Ankara Yildirim Beyazit University) ;
  • Mahmut Sertac Ozdogan (Department of Prosthodontics, Faculty of Dentistry, Ankara Yildirim Beyazit University)
  • Received : 2023.12.12
  • Accepted : 2024.04.09
  • Published : 2024.04.30

Abstract

PURPOSE. The purpose of this in vitro study was to investigate the fracture resistance, surface hardness, and color stain of 3D printed, CAD-CAM milled, and conventional interim materials. MATERIALS AND METHODS. A total of 80 specimens were fabricated from auto polymerizing polymethyl methacrylate (PMMA), bis-acryl composite resin, CAD-CAM polymethyl methacrylate resin (milled), and 3D printed composite resin (printed) (n = 20). Forty of them were crown-shaped, on which fracture strength test was performed (n = 10). The others were disc-shaped specimens (10 mm × 2 mm) and divided into two groups for surface hardness and color stainability tests before and after thermal cycling in coffee solution (n = 10). Color parameters were measured with a spectrophotometer before and after each storage period, and color differences (CIEDE2000 [DE00]) were calculated. The distribution of variables was measured with the Kolmogorov Smirnov test, and one-way analysis of variance (ANOVA), Tukey HSD, Kruskal-Wallis, Mann-Whitney U tests were used in the analysis of quantitative independent data. Paired sample t-test was used in the analysis of dependent quantitative data (P < .05). RESULTS. The highest crown fracture resistance values were determined for the 3D printed composite resin (P < .05), and the lowest were observed in the bis-acryl composite resin (P < .05). Before and after thermal cycling, increase in mean hardness values were observed only in 3D printed composite resin (P < .05) and the highest ΔE00 value were observed in PMMA resin for all materials (P < .05). CONCLUSION. 3D printing and CAD-CAM milled interim materials showed better fracture strength. After the coffee thermal cycle, the highest surface hardness value was again found in 3D printing and CAD-CAM milled interim samples and the color change of the bis-acryl resin-based samples and the additive production technique was higher than the PMMA resin and CAD-CAM milled resin samples.

Keywords

References

  1. Shillingburg, HT, Hobo S, Whitsett LD, Jacobi R, Brackett SE. Fundamentals of fixed prosthodontics. 3rd ed. Chicago; Quintessence Publishing Co; 1997. p. 225-56. 
  2. Gupta G, Gupta T. Evaluation of the effect of various beverages and food material on the color stability of provisional materials - An in vitro study. J Conserv Dent 2011;14:287-92.  https://doi.org/10.4103/0972-0707.85818
  3. Burns DR, Beck DA, Nelson SK; Committee on Research in Fixed Prosthodontics of the Academy of Fixed Prosthodontics. A review of selected dental literature on contemporary provisional fixed prosthodontic treatment: report of the Committee on Research in Fixed Prosthodontics of the Academy of Fixed Prosthodontics. J Prosthet Dent 2003;90:474-97.  https://doi.org/10.1016/S0022-3913(03)00259-2
  4. Alt V, Hannig M, Wostmann B, Balkenhol M. Fracture strength of temporary fixed partial dentures: CAD/CAM versus directly fabricated restorations. Dent Mater 2011;27:339-47.  https://doi.org/10.1016/j.dental.2010.11.012
  5. Poticny DJ, Klim J. CAD/CAM in-office technology: innovations after 25 years for predictable, esthetic outcomes. J Am Dent Assoc 2010;141 Suppl 2:5S-9S.  https://doi.org/10.14219/jada.archive.2010.0356
  6. Dawood A, Marti Marti B, Sauret-Jackson V, Darwood A. 3D printing in dentistry. Br Dent J 2015;219:521-9.  https://doi.org/10.1038/sj.bdj.2015.914
  7. Abduo J, Lyons K, Bennamoun M. Trends in computer-aided manufacturing in prosthodontics: a review of the available streams. Int J Dent 2014;2014:783948. 
  8. Bitencourt SB, Kanda RY, de Freitas Jorge C, Barao VAR, Sukotjo C, Wee AG, Goiato MC, Pesqueira AA. Long-term stainability of interim prosthetic materials in acidic/staining solutions. J Esthet Restor Dent 2020;32:73-80.  https://doi.org/10.1111/jerd.12544
  9. Rayyan MM, Aboushelib M, Sayed NM, Ibrahim A, Jimbo R. Comparison of interim restorations fabricated by CAD/CAM with those fabricated manually. J Prosthet Dent 2015;114:414-9.  https://doi.org/10.1016/j.prosdent.2015.03.007
  10. Song SY, Shin YH, Lee JY, Shin SW. Color stability of provisional restorative materials with different fabrication methods. J Adv Prosthodont 2020;12:259-64.  https://doi.org/10.4047/jap.2020.12.5.259
  11. Alharbi A, Ardu S, Bortolotto T, Krejci I. Stain susceptibility of composite and ceramic CAD/CAM blocks versus direct resin composites with different resinous matrices. Odontology 2017;105:162-9.  https://doi.org/10.1007/s10266-016-0258-1
  12. Ash Jr, MM, Nelson SJ. Wheeler's dental anatomy, physiology, and occlusion. 9th ed. St. Louis; Elsevier Inc; 2010. p. 141-51. 
  13. Swaney AC, Paffenbarger GC, Caul HJ, Sweeney WT. American Dental Association specification No. 12 for denture base resin: second revision. J Am Dent Assoc 1953;46:54-66.  https://doi.org/10.14219/jada.archive.1953.0007
  14. Tahayeri A, Morgan M, Fugolin AP, Bompolaki D, Athirasala A, Pfeifer CS, Ferracane JL, Bertassoni LE. 3D printed versus conventionally cured provisional crown and bridge dental materials. Dent Mater 2018;34:192-200.  https://doi.org/10.1016/j.dental.2017.10.003
  15. Da Silva JD, Park SE, Weber HP, Ishikawa-Nagai S. Clinical performance of a newly developed spectrophotometric system on tooth color reproduction. J Prosthet Dent 2008;99:361-8.  https://doi.org/10.1016/S0022-3913(08)60083-9
  16. Sharma G, Wu W, Dalal EN. The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Res. Appl 2005;30:21-30.  https://doi.org/10.1002/col.20070
  17. Paravina RD, Ghinea R, Herrera LJ, Bona AD, Igiel C, Linninger M, Sakai M, Takahashi H, Tashkandi E, Perez Mdel M. Color difference thresholds in dentistry. J Esthet Restor Dent 2015;27 Suppl 1:S1-9. 
  18. Sadid-Zadeh R, Zirkel C, Makwoka S, Li R. Fracture strength of interim CAD/CAM and conventional partial fixed dental prostheses. J Prosthodont 2021;30:720-4.  https://doi.org/10.1111/jopr.13325
  19. Abdullah AO, Tsitrou EA, Pollington S. Comparative in vitro evaluation of CAD/CAM vs conventional provisional crowns. J Appl Oral Sci 2016;24:258-63.  https://doi.org/10.1590/1678-775720150451
  20. Abdullah AO, Pollington S, Liu Y. Comparison between direct chairside and digitally fabricated temporary crowns. Dent Mater J 2018;37:957-963.  https://doi.org/10.4012/dmj.2017-315
  21. Penate L, Basilio J, Roig M, Mercade M. Comparative study of interim materials for direct fixed dental prostheses and their fabrication with CAD/CAM technique. J Prosthet Dent 2015;114:248-53.  https://doi.org/10.1016/j.prosdent.2014.12.023
  22. Reeponmaha T, Angwaravong O, Angwarawong T. Comparison of fracture strength after thermo-mechanical aging between provisional crowns made with CAD/CAM and conventional method. J Adv Prosthodont 2020;12:218-24.  https://doi.org/10.4047/jap.2020.12.4.218
  23. Rayyan MM, Aboushelib M, Sayed NM, Ibrahim A, Jimbo R. Comparison of interim restorations fabricated by CAD/CAM with those fabricated manually. J Prosthet Dent 2015;114:414-9.  https://doi.org/10.1016/j.prosdent.2015.03.007
  24. Karaman T, Eser B, Altintas E, Atala MH. Evaluation of the effects of finish line type and width on the fracture strength of provisional crowns. Odontology 2021;109:76-81.  https://doi.org/10.1007/s10266-020-00533-9
  25. Nejatidanesh F, Momeni G, Savabi O. Flexural strength of interim resin materials for fixed prosthodontics. J Prosthodont 2009;18:507-11. https://doi.org/10.1111/j.1532-849X.2009.00473.x
  26. Lang R, Rosentritt M, Behr M, Handel G. Fracture resistance of PMMA and resin matrix composite-based interim FPD materials. Int J Prosthodont 2003;16:381-4. 
  27. Karaokutan I, Sayin G, Kara O. In vitro study of fracture strength of provisional crown materials. J Adv Prosthodont 2015;7:27-31.  https://doi.org/10.4047/jap.2015.7.1.27
  28. Basak SS, Ozmen MF, Sagsoz O, Bayindir F. Effect of thermocycling on microhardness of CAD-CAM provisional materials. Int J Appl Dent Sci 2020;6:254-7. 
  29. Diaz-Arnold AM, Dunne JT, Jones AH. Microhardness of provisional fixed prosthodontic materials. J Prosthet Dent 1999;82:525-8.  https://doi.org/10.1016/S0022-3913(99)70050-8
  30. Digholkar S, Madhav VN, Palaskar J. Evaluation of the flexural strength and microhardness of provisional crown and bridge materials fabricated by different methods. J Indian Prosthodont Soc 2016;16:328-34.  https://doi.org/10.4103/0972-4052.191288
  31. Bitencourt SB, Kanda RY, de Freitas Jorge C, Barao VAR, Sukotjo C, Wee AG, Goiato MC, Pesqueira AA. Long-term stainability of interim prosthetic materials in acidic/staining solutions. J Esthet Restor Dent 2020;32:73-80.  https://doi.org/10.1111/jerd.12544
  32. Elagra MI, Rayyan MR, Alhomaidhi MM, Alanaziy AA, Alnefaie MO. Color stability and marginal integrity of interim crowns: An in vitro study. Eur J Dent 2017;11:330-4.  https://doi.org/10.4103/ejd.ejd_66_17
  33. Tasin S, Ismatullaev A, Usumez A. Comparison of surface roughness and color stainability of 3-dimensionally printed interim prosthodontic material with conventionally fabricated and CAD-CAM milled materials. J Prosthet Dent 2022;128:1094-101.  https://doi.org/10.1016/j.prosdent.2021.01.027
  34. Anusavice KJ, Shen C, Rawls HR. Phillips' science of dental materials. 12nd ed. St. Louis; Missouri. Elsevier Health Sciences. 2012. p. 108. 
  35. Sham AS, Chu FC, Chai J, Chow TW. Color stability of provisional prosthodontic materials. J Prosthet Dent 2004;91:447-52.  https://doi.org/10.1016/j.prosdent.2004.03.005
  36. Ruyter IE, Nilner K, Moller B. Color stability of dental composite resin materials for crown and bridge veneers. Dent Mater 1987;3:246-51.  https://doi.org/10.1016/S0109-5641(87)80081-7
  37. Yannikakis SA, Zissis AJ, Polyzois GL, Caroni C. Color stability of provisional resin restorative materials. J Prosthet Dent 1998;80:533-9.  https://doi.org/10.1016/S0022-3913(98)70028-9
  38. Anusavice KJ, Shen C, Rawls HR. Phillips' science of dental materials. 12nd ed. St. Louis; Elsevier; 2012. p. 483. 
  39. Bayindir F, Kurklu D, Yanikoglu ND. The effect of staining solutions on the color stability of provisional prosthodontic materials. J Dent 2012;40 Suppl 2:e41-6.  https://doi.org/10.1016/j.jdent.2012.07.014
  40. Rosenstiel SF, Land MF. Contemporary fixed prosthodontics (E-Book). Elsevier Health Sciences; 2015. p. 856-57. 
  41. Haselton DR, Diaz-Arnold AM, Dawson DV. Color stability of provisional crown and fixed partial denture resins. J Prosthet Dent 2005;93:70-5.  https://doi.org/10.1016/j.prosdent.2004.09.025
  42. Luo MR, Cui G, Rigg B. The development of the CIE 2000 colour-difference formula: CIEDE2000. Color Res Appl 2001;26:340-50.  https://doi.org/10.1002/col.1049
  43. Yilmaz Savas T, Aykent F. Effect of fabrication techniques on the optical properties of zirconia-based systems. J Prosthet Dent 2021;125:528.e1-8. 
  44. Stawarczyk B, Sener B, Trottmann A, Roos M, Ozcan M, Hammerle CH. Discoloration of manually fabricated resins and industrially fabricated CAD/CAM blocks versus glass-ceramic: effect of storage media, duration, and subsequent polishing. Dent Mater J 2012;31:377-83.  https://doi.org/10.4012/dmj.2011-238
  45. Revilla-Leon M, Ozcan M. Additive manufacturing technologies used for processing polymers: current status and potential application in prosthetic dentistry. J Prosthodont 2019;28:146-58.  https://doi.org/10.1111/jopr.12801
  46. Shin JW, Kim JE, Choi YJ, Shin SH, Nam NE, Shim JS, Lee KW. Evaluation of the color stability of 3d-printed crown and bridge materials against various sources of discoloration: an in vitro study. Materials 2020;13:5359. 
  47. Shin DH, Rawls HR. Degree of conversion and color stability of the light curing resin with new photoinitiator systems. Dent Mater 2009;25:1030-8.  https://doi.org/10.1016/j.dental.2009.03.004
  48. Berli C, Thieringer FM, Sharma N, Muller JA, Dedem P, Fischer J, Rohr N. Comparing the mechanical properties of pressed, milled, and 3D-printed resins for occlusal devices. J Prosthet Dent 2020;124:780-6. https://doi.org/10.1016/j.prosdent.2019.10.024