• Title/Summary/Keyword: acoustic methods

Search Result 918, Processing Time 0.024 seconds

A Study on Frequency-Modulated Methods for Reducing Acoustic Resonance in HID Lamp (고압방전램프의 음향공명감소를 위한 주파수변조에 관한 연구)

  • Kim, Gi-Jung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.12
    • /
    • pp.622-626
    • /
    • 2001
  • HID(high intensity discharge)lamps are high pressure mercury lamp, high pressure sodium lamp and metalhalide lamp. metalhalide lamp among these lamps has considered to be one of the most effective artificial light sources and this lamp has good efficiency, good color rendition and good focusing capability, But the shortcorning of metalhalide lamp is known as acoustic resonance phenomena in the discharge tube when lighted by electronic ballast and then acoustic resonance cause various problems such as the arc instability, light output fluctuations. In this paper, to reduce the acoustic resonence phenomena, the electronic ballast was designed by three methods for high frequency operation wish frequency-modulated sinusodial waves in acoustic resonance frequency band. These frequency-modulated methods are resonance frequency and resonance frequency, resonance frequency and non-resonance frequency non-resonance frequency and non-resonance frequency Experiment results could't show the Presence of acoustic resonance visually and it proved that the resonance-generating conditions can be avoided by continuously changing the two operating frequencies in acoustic resonance band (20.59kHz∼94.2kHz).

  • PDF

Acoustic Echo Canceller using Adaptive IIR Filters with Prewhitening Method and Variable Step-Size LMS Algorithm

  • Cho, Ju Pil;Hwng, Tae Jin;Baik, Heung Ki
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2E
    • /
    • pp.14-20
    • /
    • 1997
  • The future teleconferencing systems will need an appropriate system which controls properly the acoustic echo for the convenient communication. The conventional acoustic echo cancellation algorithms involve large adaptive filters identifying the impulse response of the echo path. The use of adaptive IIR filters appears to be a reasonable way to reduce computational complexity. Effective cancellation of acoustic echo presented in teleconferencing system requires that adaptive filters have a rapid convergence speed. One of the main problems of acoustic echo cancellation techniques is that the convergence properties degrade for an highly correlated signal input such as speech signals. By the way, the introduction of linear prediction filers onto the structure of the acoustic echo cancellation represents one approach to decorrelate the speech signal. And variable step-size LMS algorithm improves the convergence speed through a little increasing of computational complexity. In this paper, we applied these two methods to the acoustic echo canceller(AEC) and showed that these methods have better performances than the conventional AEC.

  • PDF

Noise Analysis of Intake System by Hybrid Method (하이브리드 방법을 이용한 배기계 소음 해석)

  • 이장명;한성수;임학종
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.310-316
    • /
    • 1999
  • 4-Pole parameter method based on an acoustic theory is very popular for the analysis of the acoustic behavior of the car exhaust system. However, this method is applicable only for the simple shape of acoustic elements of the muffler. Numerical methods such as FEM(Finite Element Method) or BEM(Boundary Element Method) can also provide acceptable results for the acoustic analysis of the car exhaust system. Even though these numerical methods have benefits for the analysis of complicated shape of acoustic elements of the muffler, time consuming is another problem during modeling and numerical calculation. Combining benefits of both methods, the new code called the hybrid method for car exhaust system is introduced. And the developed code is utilized for calculation of the transmission loss of a main muffler of an automobile comparing with the experimental results.

  • PDF

A study on the estimation of fracture toughness of granite by acoustic emission (미소 파괴음 빈도 측정에 의한 화강암의 파괴인성 평가에 관한 연구)

  • 신재근;이상은;임한욱
    • Tunnel and Underground Space
    • /
    • v.10 no.2
    • /
    • pp.227-236
    • /
    • 2000
  • The fracture toughness can be measured by the two testing methods using chevron-notched specimen according to the ISRM Working Group of Commission of Testing Methods. They are chevron bend (CB) test and short rod (SR) test. In this study, the suggested methods (Level I tests) were conducted on the CB and SR specimens of Chuncheon granite. In addition. the J-integral analysis was combined with an acoustic emission technique to determine the fracture toughness. The results from two telling methods were analyzed in terms of the anisotropy and the acoustic emission characteristics.

  • PDF

Fast Evaluation of Sound Radiation by Vibrating Structures with ACIRAN/AR

  • Migeot, Jean-Louis;Lielens, Gregory;Coyette, Jean-Pierre
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.561-562
    • /
    • 2008
  • The numerical analysis of sound radiation by vibrating structure is a well known and mature technology used in many industries. Accurate methods based on the boundary or finite element method have been successfully developed over the last two decades and are now available in standard CAE tools. These methods are however known to require significant computational resources which, furthermore, very quickly increase with the frequency of interest. The low speed of most current methods is a main obstacle for a systematic use of acoustic CAE in industrial design processes. In this paper we are going to present a set of innovative techniques that significantly speed-up the calculation of acoustic radiation indicators (acoustic pressure, velocity, intensity and power; contribution vectors). The modeling is based on the well known combination of finite elements and infinite elements but also combines the following ingredients to obtain a very high performance: o a multi-frontal massively parallel sparse direct solver; o a multi-frequency solver based on the Krylov method; o the use of pellicular acoustic modes as a vector basis for representing acoustic excitations; o the numerical evaluation of Green functions related to the specific geometry of the problem under investigation. All these ingredients are embedded in the ACTRAN/AR CAE tool which provides unprecedented performance for acoustic radiation analysis. The method will be demonstrated on several applications taken from various industries.

  • PDF

Acoustic Field Analysis of Reverberant Water Tank using Acoustic Radiosity Method and Experimental Verification (음향라디오시티법을 이용한 잔향수조 음장 해석과 실험검증)

  • Kim, Kookhyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.5
    • /
    • pp.464-471
    • /
    • 2019
  • The acoustic power is a major acoustical characteristic of an underwater vehicle and could be measured in a reverberant water tank. In order to obtain accurate measurement results, the acoustic field formed by the sound source should be investigated quantitatively in the reverberant water tank. In this research, the acoustic field of a reverberant water tank containing an underwater sound source has been analyzed by using an acoustic radiosity method one of the numerical analysis methods suitable for the acoustic analysis of the highly diffused space. The source level of the underwater sound source and acoustical properties of the water tank input to the numerical analysis have been estimated by applying the reverberant tank plot method through a preliminary experiment result. The comparison of the numerical analysis result with that of the experiment has verified the accuracy of the acoustic radiosity method.

Assessment of Acoustic Iterative Inverse Method for Bubble Sizing to Experimental Data

  • Choi, Bok-Kyoung;Kim, Bong-Chae;Kim, Byoung-Nam;Yoon, Suk-Wang
    • Ocean Science Journal
    • /
    • v.41 no.4
    • /
    • pp.195-199
    • /
    • 2006
  • Comparative study was carried out for an acoustic iterative inverse method to estimate bubble size distributions in water. Conventional bubble sizing methods consider only sound attenuation for sizing. Choi and Yoon [IEEE, 26(1), 125-130 (2001)] reported an acoustic iterative inverse method, which extracts the sound speed component from the measured sound attenuation. It can more accurately estimate the bubble size distributions in water than do the conventional methods. The estimation results of acoustic iterative inverse method were compared with other experimental data. The experimental data show good agreement with the estimation from the acoustic iterative inverse method. This iterative technique can be utilized for bubble sizing in the ocean.

A Study on the Structural-acoustic Analysis Modeling Methods of the Room with Heavy Impact Noise Source (중량충격원 충격에 따른 공동주택 실내공간의 구조음장 해석 모델링방법에 관한 연구)

  • Lee, Jae-Kwang;Koo, Hae-Shik
    • KIEAE Journal
    • /
    • v.9 no.6
    • /
    • pp.81-87
    • /
    • 2009
  • The purpose of the present study is to establish structural noise analyzing method for apartments building floor with structural-acoustic coupling analysis modeling. Noise through floor in the room is recognized as a significant problem with the consequence that noise isolation technique has been studied in the various fields of industry. From among noise factors, resonance sound is the main reason for solid noise of the floor, which is occurred by mechanical vibrations of the acoustic boundary line and the change of velocity. To analyse this phenomenon, numerical computation methods are provided in many fields, In this study, evaluation method for slab is established using finite element method, and a case study for analyzing acoustic phenomenon was suggested. The results show that numerical method, especially F.E.M, has a good approximation to predict noise at floors.

Three-Stage Framework for Unsupervised Acoustic Modeling Using Untranscribed Spoken Content

  • Zgank, Andrej
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.810-818
    • /
    • 2010
  • This paper presents a new framework for integrating untranscribed spoken content into the acoustic training of an automatic speech recognition system. Untranscribed spoken content plays a very important role for under-resourced languages because the production of manually transcribed speech databases still represents a very expensive and time-consuming task. We proposed two new methods as part of the training framework. The first method focuses on combining initial acoustic models using a data-driven metric. The second method proposes an improved acoustic training procedure based on unsupervised transcriptions, in which word endings were modified by broad phonetic classes. The training framework was applied to baseline acoustic models using untranscribed spoken content from parliamentary debates. We include three types of acoustic models in the evaluation: baseline, reference content, and framework content models. The best overall result of 18.02% word error rate was achieved with the third type. This result demonstrates statistically significant improvement over the baseline and reference acoustic models.

Note on the Two-Microphone Methods for the Measurement of Acoustic Impedance (음향 임피던스 측정을 위한 이중 마이크로폰 기법에 대한 고찰)

  • SEO, SEONGHYEON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.2
    • /
    • pp.163-169
    • /
    • 2018
  • The present article discusses about the measurement techniques of acoustic impedance that becomes one of the important acoustic characteristics of various boundaries found inside of propulsion systems. Acoustic characteristics including acoustic impedance and reflection coefficient can be often assessed and estimated by use of the two-microphone method. Theoretical expressions of acoustic impedance and reflection coefficient measured in an impedance tube are presented for both cases with mean flow and without flow, and the practical application of the method through calibration is also provided. The acoustic impedance and the reflection coefficient are related with axial locations of microphones, thermodynamic characteristics of gas inside, and the transfer function between the pressure wave measurements at multiple locations.