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This paper presents a new framework for integrating 
untranscribed spoken content into the acoustic training of 
an automatic speech recognition system. Untranscribed 
spoken content plays a very important role for under-
resourced languages because the production of manually 
transcribed speech databases still represents a very 
expensive and time-consuming task. We proposed two 
new methods as part of the training framework. The first 
method focuses on combining initial acoustic models using 
a data-driven metric. The second method proposes an 
improved acoustic training procedure based on 
unsupervised transcriptions, in which word endings were 
modified by broad phonetic classes. The training 
framework was applied to baseline acoustic models using 
untranscribed spoken content from parliamentary 
debates. We include three types of acoustic models in the 
evaluation: baseline, reference content, and framework 
content models. The best overall result of 18.02% word 
error rate was achieved with the third type. This result 
demonstrates statistically significant improvement over 
the baseline and reference acoustic models. 
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I. Introduction 

Automatic speech recognition research has experienced 
enormous development in the last two decades [1]. The 
number of speech recognition applications that are being 
transferred from laboratories into a real-life environment is 
constantly rising [2]-[5]. Automatic speech recognition still 
relies on manually transcribed and annotated spoken  
language resources, whose production, regardless of recent 
developments, is still very expensive and time-consuming. 
This is one of the main reasons speech recognition technology 
is available only for “major” languages, that is, some major 
western European and Asian languages, out of a total of 
approximately 6,000 world languages. 

One of the possible ways [6], [7] to create spoken language 
resources for training acoustic models is to collect some type of 
untranscribed spoken content and apply procedures for 
unsupervised [8] or lightly supervised training [9]. This can 
improve quality for under-resourced languages. The main idea 
[6], [10], [11] behind such methods is to train a baseline speech 
recognition system using an existing, small, manually 
transcribed speech database, to recognize acquired 
untranscribed spoken content, and to apply the recognized 
transcriptions for unsupervised acoustic training or adaptation. 

Wessel and Ney [11] presented an unsupervised training 
method which used a confidence measure. Lamel and others 
[6] proposed an unsupervised method with incremental chunks 
of untranscribed content. They also showed that retranscribing 
can significantly improve performance. Cincarek and others [7] 
used selective training to decrease the complexity of 
unsupervised acoustic model training. Some authors [8], [10] 
have compared the incremental with the “use-all-data” 
approach for unsupervised training. These methods process 
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untranscribed spoken content on the level of acoustic models 
[12]. Lecouteux and others [13] presented a method in which 
unsupervised training was incorporated directly into the speech 
decoder. Very similar methods are also used for lightly 
supervised training [9], in which some sort of imperfect 
transcription [13] is used in each iteration. 

In this paper, we propose a new framework for processing 
acquired untranscribed spoken content. The main focus in the 
proposed framework is on improving the first few iterations of 
untranscribed content processing in which the portion of 
speech recognition errors is higher, as was shown in the 
preceding analysis. This is directly connected with the 
complexity (high inflection) of the language that is being 
recognized. In general, the existing methods presented above 
use a “homogenous” unsupervised training approach. Our 
framework introduces three stages with various complexities. 
This approach models complex languages better and handles 
the content conditions mismatch. In the first stage, we propose 
a new method for generating initial content acoustic models. 
This method produces combined initial acoustic models based 
on a data-driven phoneme confusion matrix metric. The result 
of the proposed method has some similarity with the maximum 
a posteriori (MAP) adaptation procedure, that is, “linear 
combination.” However, it generates acoustic models that are 
even more general and, as such, more appropriate for initial 
acoustic model training. In the second stage, we propose a new 
broad-endings training approach, which reduces the impact of 
acoustic reductions occurring at the ends of words during 
acoustic models training. This novel unsupervised training 
method is important for highly inflectional and agglutinative 
languages, in which word endings represent a high proportion 
of speech recognition errors. 

Untranscribed spoken content can be obtained from various 
sources, including radio and TV broadcasts [14], [15], 
meetings of government bodies, and Internet sites. In our case, 
we used parliamentary debates as a surce of untranscribed 
spoken content. 

Slovenian is taken as an example of an under-resourced 
language [16]. With only 2 million native speakers, it is one of 
the smallest official languages in the European Union. 
Slovenian belongs to the Slavic language group and is a highly 
inflectional Indo-European language with relatively free word 
order, which makes the speech recognition task very complex 
[17]. There are approximately 300 hours of spoken language 
resources available for Slovenian [16]. These have both perfect 
and imperfect transcriptions. However, when language 
complexity is taken into account [18], this amount of spoken 
language resources cannot be compared with the amount of 
spoken language resources available for major world 
languages such as English, Spanish, and Mandarin. 

This paper is organized as follows. Section II presents the 
proposed framework for incorporating the new content into 
acoustic model training. A short overview of the spoken 
language resources involved is given in section III. The 
undertaken experiments are described in section IV. The speech 
recognition results obtained and their evaluation are presented 
in section V, and the conclusion and future prospects are given 
in section VI. 

II. Framework for Unsupervised Acoustic Model 
Training 

We propose a new framework for using the collected 
untranscribed spoken content to train the baseline acoustic 
models of a speech recognition system in this section. The 
framework consists of three stages, 

• Stage 1: speech/non-speech preprocessing of content and 
generation of combined initial acoustic models, 

• Stage 2: unsupervised broad-endings acoustic model training, 
• Stage 3: final standard unsupervised acoustic model training. 

One training iteration cycle consists of two parts: a speech 
recognition task and acoustic model training. First, the speech 
recognition task is run using the acoustic models from the 
previous iteration, which generates the current version of 
content transcriptions. Any words whose transcriptions are 
very likely erroneous are omitted from the training set by using 
the decoder’s confidence measure threshold. Then, the acoustic 
model training is performed, applying this new version of the 
transcriptions. The number of iterations in each stage is set in 
an empirical way using a development set. 

In order to compare our framework with the reference 
unsupervised training method, a second set of content acoustic 
models was created. The unsupervised procedure proposed by 
Lamel and others [6] was used as the baseline for training the 
reference acoustic models. Necessary modifications were made 
to guarantee the comparability of methods and an equal 
number of unsupervised acoustic model training iterations. The 
topology and complexity of the final acoustic models trained 
with our procedure, and the reference procedure were 
comparable. 

1. Stage 1: Speech/Non-speech Preprocessing and Generation 
of Combined Initial Acoustic Models  

Analysis of the untranscribed spoken content showed that 
the speech signal contained longer portions of silence in some 
places. One reason for these pauses was the time which elapsed 
during a change of speakers, and another cause may be 
connection errors (overloaded streaming server, stream quality 
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change, and network congestion) when content is collected 
over the Internet. These silent parts are of no use for additional 
acoustic model training, but they still significantly contribute to 
the processing time. Therefore, we decided to exclude them 
from the training set by applying the speech/non-speech 
classification. 

The speech/non-speech classification was carried out using 
Gaussian mixture models (GMMs), which were trained on 
1/20 of the full baseline training set. The non-speech model 
represented silence and low-level background noise. The 
speech model had 128 mixture probability density functions, 
and the non-speech model had 64 mixture probability density 
functions. The difference in the number of mixtures between 
the speech and non-speech models arose because of the 
varying amount of training material available per class. The 
speech/non-speech classifier output was post-processed to 
smooth the condition changes which were shorter than four 
consecutive frames. This reduced the number of glitches in the 
classifier’s output. The speech segments were then used for 
unsupervised acoustic model training. 

Some extra steps were already involved (see section IV) in 
the feature extraction frontend to reduce the acoustic condition 
mismatch between the baseline database and spoken content 
database. The influence of this resource mismatch is especially 
noticeable during the first iteration. We present a new method 
to initialize acoustic models for unsupervised training in order 
to reduce the disadvantage of combining spoken content 
language resources. 

The basic idea behind this initialization method is that, 
during a phoneme speech recognition task, similar phonemes 
are confused with one another more often than dissimilar ones. 
Similar phonemes should use the same acoustic model to 
generalize the initial acoustic-phonetic space of diverse spoken 
language resources. Acoustic models used for the phoneme 
speech recognition task were trained on the Slovenian 
Broadcast News (BNSI) baseline speech database whereas the 
recognition set was the training set of the untranscribed spoken 
content of the Slovenian Parliament (SloParl). A number of 
phoneme confusions result from this specific phoneme speech 
recognition task. The reference target transcriptions are 
prepared as follows. First, the speech recognition task is run at 
the word level with the source acoustic models. Then, the word 
level transcriptions are converted into phoneme level reference 
transcriptions using the phonetic vocabulary of a speech 
recognition system. The end result is a phoneme confusion 
matrix. 

For the first iteration of unsupervised acoustic training, the 
combined initial monophone acoustic models, denoted as 
target acoustic models, were built as the normalized average 
sum of the few most influential source monophone acoustic 

models according to the weights calculated from the phoneme 
confusion matrix. 

The new initial target monophone acoustic model Mtrg is 
represented as 
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where Msrci denotes a particular source monophone acoustic 
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Continuous density hidden Markov Models (HMMs) were 
used in the system. The model Msrci in (1) can be decomposed  
into four components: means, mixture weights, variances, and 
transition probabilities. The initial target acoustic model means 
are defined as 
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where μtrg and μsrc denote mean values of the target and source 
acoustic models, respectively. The influence weight is 
represented by wi. The next components are mixture weights of 
the target acoustic model, which are defined as 
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where ωtrg and ωsrc denote mixture weight values for target and 
source acoustic models, respectively. The target acoustic model 
variances are given by the maximal variance of all source 
probability density functions (PDFs): 
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where trg srcandυ υ denote variances for target and source 
acoustic models, respectively. Equation (5) has a generalizing 
effect, which is advantageous for initial acoustic models. The 
probabilities in the transition matrix are the fourth element of 
the initial target acoustic model. They are calculated as 
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where trg srcandα α  denote the transition probability for the 
target and source acoustic models, respectively. 

The final step necessary is to define the weight wi, which 
gives the similarity between a source and target phoneme 
according to the phoneme confusion matrix. The weight wi is 
defined as 
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where ( )src trgconf ,
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Μ Τ  denotes the number of confusions  
between the pool of source acoustic models Msrc and the 
current target phoneme as labeled in the transcriptions. The 
source weights wi are normalized, and so the sum of all weights 
for one target acoustic model must meet the following 
criterion:           
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The fulfillment of this criterion is particularly important 
because it guarantees that the new probability density functions 
for the target acoustic model will be built correctly. 

2. Stage 2: Unsupervised Broad-Endings Acoustic Training  

The second stage of unsupervised acoustic training starts 
with the final version of acoustic models from the first. Word 
endings are frequently truncated during continuous speech due 
to reductions [19], [20]. This phenomenon is present in many 
languages. Its influence can be severe in highly inflectional and 
agglutinative languages featuring many different word endings 
[17], [21]. The preceding analysis showed that the first few 
iterations of speech recognition for unsupervised acoustic 
training thus exclude otherwise regular sentences as outliers 
because of misrecognized or reduced word endings. The 
decision of whether or not a sentence is excluded is made using 
the decoder’s confidence measure value. The proportion of 
such outliers is influenced by the type of content and language 
complexity, but it can be as high as 10% of the full set. 

We propose a new method of unsupervised broad-endings 
acoustic model training to reduce this drawback. The reduction 
phenomenon usually has the greatest impact on the final vowel 
of a word. The idea behind the method we propose is to use 
modified vocabulary (and consequently, transcriptions) for 
speech recognition and unsupervised training, in which the 
ending phonemes are altered into broad phonetic classes 
(BPCs). The main characteristic of BPCs is that they occupy a 
larger acoustic-phonetic space than phonemes. The BPCs 
involved in our framework were generated manually by an  

Table 1. Example of original and modified vocabulary. 

Original orthographic transcription Original phonetic transcription

hiša x i: S a 

hiše x i: S E 

hiši x i: S i 

hišo x i: S O 

Modified orthographic transcription Modified phonetic transcription

hiša x i: S BPC1 

hiše x i: S BPC1 

hiši x i: S BPC2 

hišo x i: S BPC2 

 

 
expert. There are several methods available for creating the 
broad phonetic classes in a data-driven manner [22] in order to 
exclude the need for specific language expertise. This can be 
important in languages with a small number of speakers. 

We used the following five BPCs in the framework: 

• BPC1: open and open-mid vowels, 
• BPC2: close and close-mid vowels, 
• BPC3: sonorants, 
• BPC4: voiced non-sonorants, 
• BPC5: unvoiced non-sonorants. 

An example of the proposed vocabulary is given in Table 1. 
The nominative, genitive, dative, and accusative cases of the 
Slovenian noun hiša “house” are shown here. The noun hiša 
consists of the stem hiš- and the ending -a. According to the 
acoustic and phonetic properties of the suffixed phoneme, the 
applicable broad phonetic class defined above was used in the 
modified vocabulary, that is, the phoneme /a/ is an open vowel, 
and thus PBC1 was used. 

An additional set of acoustic models was created for the 
proposed broad-endings training method for the newly defined 
BPC1 to BPC5 models. The BPC acoustic models were 
initialized with the flat-training approach using a global mean 
and variance. The flat-start approach was used due to the error-
prone, automatically-generated transcriptions that were used 
for initialization. Each initialized BPC acoustic model was then 
trained using the Baum-Welch procedure from modified 
transcriptions of the training set for each particular class. 

Four iterations of the broad-endings acoustic model training 
were included in the framework. The amount of content 
involved was increased from 1/4 to 1/1. Incrementally 
increasing the training data size is a technique frequently 
applied in unsupervised training procedures [6], [7], [9] 
because it helps manage the complexity of task. 
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3. Stage 3: Final Standard Unsupervised Acoustic Model 
Training  

After the broad-endings acoustic models for the second stage 
were built, several iterations of standard unsupervised acoustic 
training were run in the third stage. The original phonetic 
vocabulary was applied in this stage, and so the true phonemes 
were used for endings instead of broad phonetic classes. The 
unsupervised acoustic model training method proposed by 
Lamel and others [6] was used as a baseline for this stage. 
Instead of first adding new content in chunks [6], the method 
was modified in order to use only the complete untranscribed 
content set. This modification was a result of the first two 
stages, in which the content amount was increased 
incrementally. The unsupervised training method on the 
complete set had already yielded good results in [6]. 

The result of this framework was a set of final acoustic 
models, which were trained on the speech database created 
from the untranscribed content. 

III. Spoken Language Resources 

The baseline spoken language resource used in these 
experiments was the BSNI speech database [23]. This database 
was designed in cooperation with the University of Maribor 
and the Slovenian national broadcasting company, RTV 
Slovenia. It consists of two different types of TV news shows. 
The first type is the evening news, which gives an overview of 
daily events, and the other type is the late-night news program, 
which focuses on two to three major topics. The transcriptions 
were manually annotated and transcribed according to 
recommendations on building broadcast news spoken 
language resources, which were produced in connection with 
the Transcriber tool [24]. This tool was used for transcription 
and manual segmentation. 

There are a total of 36 hours of manually transcribed speech 
material available for experiments. The size of the training set 
is 30 hours. The BNSI database has 1,565 different speakers, of 
which are 1,069 male, and 477 are female. The gender of the 
remaining 19 speakers was annotated as unknown. This gender 
bias in the database reflects the actual proportion of male to 
female speakers on Slovenian news shows. 

The secondary spoken language resource that was used to 
represent untranscribed content was the SloParl database [25]. 
Imperfect, error-prone transcriptions generated by the 
Parliamentary Transcription Office were also available as part 
of this database, but they were not used in our framework. 
These imperfect transcriptions are available from the 
Parliamentary Internet Archive website. This type of content is 
well-suited to generating untranscribed spoken language 

resources quickly and economically. The sources of such 
content are quite frequently various governmental sites and 
media producers that are obliged to make their production 
available accessible to handicapped persons. 

The SloParl database consists of 100 hours of spoken 
debates. Although the discourse type is political debates, the 
SloParl database covers fairly broad topics because a large 
variety of national issues are covered in the set. Therefore this 
presented no limitation to constructing the experimental setup. 
The amount of speakers in this database is smaller in 
comparison to the BNSI database as it has only 255 different 
speakers. Acoustically, the spoken material is comparable to 
the BNSI database, although some level of reverberation is 
sometimes present in the recordings. 

Special requirements had to be taken into account for the 
evaluation procedure due to the framework’s particular 
properties: 

• The focus had to be on improving the acoustic modeling. 
• The impact of using diverse content for acoustic modeling 

such as transfer of databases and channel conditions had to 
be minimized. 

• The impact of acoustic-phonetic characteristics of words 
had to be taken into account. 

We decided to use the third speech database for evaluation 
to meet these requirements. The Slovenian PoliDat speech 
database is used to develop voice-driven telephone services. 
The difference in speaking style between the two speech 
content databases is not as large as would be expected 
because the majority of speakers in parliament prepare 
debates in advance or even read their statements. The PoliDat 
database is constructed according to the specifications for the 
SpeechDat databases [26]. Recordings of 1,200 speakers 
were made using stationary, mobile, and VoIP phones. A set 
with phonetically balanced, isolated words was taken from 
the PoliDat database for evaluation. This test set fulfilled all 
the requirements given above. Each of the 200 test speakers 
pronounced four different phonetically-balanced words. This 
allowed us to avoid using a statistical language model, which 
could have masked the differences in acoustic modeling. The 
speech recognizer’s vocabulary has 1,491 different words, 
enabling full coverage of the applied test set. The speakers in 
the PoliDat database were selected so the demographic 
characteristics of gender, age, and accent of the complete 
population were fairly represented. 

The BNSI and SloParl databases were recorded using a 
wideband channel and the PoliDat database used was produced 
with a narrowband channel. To neutralize this discrepancy, 
special steps were needed during the acoustic preprocessing 
phase (see section IV). Detailed statistics for all three spoken  
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Table 2. Spoken language resources. 

 BNSI SloParl PoliDat 

Length (h) 36 100 21 

No. of speakers 1,565 255 1,200 

No. of words 268,000 655,000 – 

Vocabulary 37,000 37,000 – 

 

 
language resources are given in Table 2. 

The data in Table 2 clearly shows how important the 
untranscribed spoken content resources are in speech 
recognition. The SloParl database has the largest amount of 
spoken material available, although its creation was simpler. If 
more untranscribed material is needed, this production process 
could be repeated with the same content source or a new one. 

IV. Experiments 

The experiments were based on a speech recognition system 
that uses continuous-density HMMs with Gaussian PDFs. The 
HTK toolkit was used for HMM acoustic modeling. 

We converted the BNSI and SloParl databases to an 8 kHz 
narrowband version during the acoustic preprocessing to match 
the PoliDat database conditions. After the down-sampling an 
additional band-pass filter, which simulated telephone channel 
conditions, was constructed using Matlab and applied to all 
down-sampled recordings. This assured identical acoustic 
conditions for all three spoken language resources. 

The frontend applied for constructing a speech recognition 
system was based on mel-frequency cepstral coefficients 
(MFCC) and energy (12 MFCC + 1 E, delta, delta-delta). The 
feature vector size was 39. The cepstral mean normalization 
was added to the feature extraction procedure to further reduce 
the differences in acoustic channels between all speech 
databases [27]. 

The baseline speech recognition system was developed 
using the BNSI speech database before the proposed 
framework was applied. The manually segmented speech 
material was used for baseline training. This was necessary to 
exclude the impact of potential errors that could occur during 
the automatic segmentation procedure on our baseline acoustic 
models. The baseline acoustic models were generated in three 
steps. First, the context-independent acoustic models with one 
mixture of Gaussian PDF were built. Their task was to improve 
the original BNSI transcriptions using the forced realignment 
procedure. Utterances that were too divergent with the first 
acoustic models were excluded as outliers. The amount of such 
utterances was approximately 0.35% on the first run. 

The second step was similar to the first one. Acoustic models 
were once again trained from scratch using the refined 
transcriptions generated in the first step. This time, context-
independent acoustic models with a mixture of Gaussian PDFs 
were trained before the forced alignment procedure was 
applied once again. The amount of outliers decreased to 0.21%, 
which reflects the level of improvement. 

In the final step of building the baseline system, triphones, 
the context-dependent acoustic models, were trained. The 
number of free triphone parameters was reduced using the 
phonetic decision-tree based clustering method. The decision 
trees were induced with the broad phonetic classes created 
from a data-driven approach based on the phoneme confusion 
matrix [22]. Prior results showed that this decision-tree based 
clustering approach improves the speech recognition 
performance. The number of Gaussian PDFs per state was 
incrementally increased to 16 when the clustering was finished. 
These acoustic models were used as the final baseline set. 

This baseline speech recognition system functioned as the 
starting point for our framework, in which additional training 
data based on the content collected was added. The acquired 
speech material was first segmented using the GMMs to 
exclude the non-speech parts. The initial acoustic models were 
created by combining BNSI baseline acoustic models using the 
phoneme confusion matrix metric during the first stage. The 
first-stage initial acoustic models were refined during the 
second stage with the unsupervised broad-endings acoustic 
training. Four unsupervised broad-endings training iterations 
applying various amount of content were carried out. 

After an additional four standard iterations of the 
unsupervised acoustic training procedure, the final content 
acoustic models included in the evaluation of this framework 
were created. 

For the evaluation procedure, a reference content-based 
system was trained in unsupervised mode. This system had the 
same number of iterations as were carried out in the framework 
system. 

The full experimental setup used a large amount of spoken 
material, which was involved in several iterations. We used a 
group of multi-core servers as a hardware platform in order to 
be able to manage this task in a reasonable time. 

V. Results 

The first evaluation step was devoted to analyzing the 
baseline set of acoustic models trained on the BNSI speech 
database. All speech recognition results are given as word error 
rate (WER). The phonetically-balanced isolated words from 
the PoliDat database were used for evaluation. The WER for 
the baseline acoustic models is given in Table 3. 
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Table 3. Speech recognition results on PoliDat database with BNSI
baseline system. 

Acoustic models WER (%) 

BNSI baseline 23.63 

Table 4. Speech recognition results on PoliDat database with
reference content acoustic models. 

Acoustic model 
version 

No. of 
iteration 

Content 
amount WER (%) 

Cont-ref-1 1 1/4 20.69 

Cont-ref-2 2 1/3 21.09 

Cont-ref-3 3 1/2 19.89 

Cont-ref-4 4 1/1 19.63 

Cont-ref-7 7 1/1 19.50 

Cont-ref-8 8 1/1 19.50 

 

 
The overall baseline WER of 23.63% is comparable with 

results achieved on other systems of similar complexity [28], 
[29]. The main factors contributing to the relatively high WER 
are the vocabulary size, database type (combining two spoken 
language resources), and complexity (phonetically-balanced 
words) of the test scenario. A speech recognition system of 
similar complexity in which acoustic models were trained 
solely on the PoliDat speech database achieved a WER of 
15.62%. The difference between the BNSI baseline system and 
the solely PoliDat system mainly results from the use of 
various speech databases and all the issues connected with this, 
that is speaking style, speaker demographics, and topic. It can 
be anticipated that the difference in WER will be reduced to 
some extent with the use of a content speech database. 

The second evaluation step centered on the reference content 
acoustic models that were designed for reasons of comparison, 
that is, without using the new methods proposed here. Various 
versions of acoustic models in the second evaluation step differ 
in two aspects: first, in the amount of content material that was 
used for training and, second, the number of training iterations. 
The results of the second evaluation step are presented in Table 4. 

The speech recognition results for the reference content 
acoustic models generated with the standard unsupervised 
acoustic model training method show general improvement 
over the BNSI baseline, although the decrease in WER is not 
homogeneous. The first version of the reference content 
acoustic model, Cont-ref-1, in which only one iteration of 
acoustic model training on one-quarter of the content material 
was applied, achieved a WER of 20.69%. The best overall 
result in the second evaluation step was 19.50%. This was  

Table 5. Speech recognition comparison on PoliDat database for the 
stage 1 acoustic models. 

Acoustic model version Content amount WER (%) 

BNSI baseline retrain 1/4 22.70 

Stage 1 1/4 22.16 

 

 
achieved with the Cont-ref-8 version (eighth iteration, full 
content set) of the acoustic model. The improvement was an 
absolute 4.13%. The same result was also achieved with the 
Cont-ref-7 acoustic models, which indicates saturation of the 
acoustic training procedure. A special case was the Cont-ref-2 
set of acoustic models, in which a small degradation of 
performance occurred in comparison with the models from the 
previous iteration. In this case, the WER increased from 
20.69% to 21.09%. Detailed analysis of the training framework 
showed that the possible cause could be the additional amount 
of content material, in which larger proportions of long 
utterances were observed. This type of utterance can be 
problematic in unsupervised training because the errors 
occurring in long utterances accumulate and degrade the 
training procedure quality. 

The proposed framework was evaluated in the last step. First, 
the method for combining initial acoustic models proposed in 
stage 1 was evaluated. The stage 1 acoustic models were partly 
compared with the BNSI baseline as shown in Table 3 and 
partly with the BNSI baseline retrained on the content training 
set (see Table 5). One iteration of Baum-Welch retraining was 
used as an adaptation to reduce the database condition 
mismatch. 

The retrained BNSI baseline acoustic models improved the 
results for the BNSI baseline acoustic models from a WER of 
23.63% to 22.70%. The stage 1 acoustic models yielded a 
WER of 22.16%. These results show that both approaches for 
reducing condition mismatch improved the speech recognition 
results, with slightly better improvements from the stage 1 
acoustic models. 

Second, the entire proposed framework was evaluated. 
Various versions of acoustic models differed in the amount of 
content material and the number of training iterations applied. 
In addition, the combinations of initial acoustic models and 
broad-endings training were also included. The results of the 
third evaluation step are presented in Table 6. 

The speech recognition results for the framework content 
acoustic models show improvement in comparison to the 
reference content acoustic models. The first iteration Cont-
frmw-1 acoustic models achieved a WER of 19.89%. The 
difference between the framework and reference acoustic  
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Table 6. Speech recognition results on PoliDat database with
framework content acoustic models. 

Acoustic model 
version No. of iteration Content amount WER (%)

Cont-frmw-1 1 (ciAM+b_end) 1/4 19.89 

Cont-frmw-2 2 (b_end) 1/3 19.89 

Cont-frmw-3 3 (b_end) 1/2 19.50 

Cont-frmw-4 4 (b_end) 1/1 18.96 

Cont-frmw-7 7 1/1 18.69 

Cont-frmw-8 8 1/1 18.02 

 
 

Fig. 1. WER for various versions of reference and framework
acoustic models. 
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models is in the use of combined initial acoustic models and 
broad-endings approach for training the framework models. In 
the second iteration, which is one-third of the content, the 
WER remained the same. No degradation such as that 
occurring in the reference content acoustic models was seen. 
This result indicates that the broad-endings training approach 
can, to some extent, compensate for the problem of 
accumulating errors in long utterances. In the last iteration of 
the second framework stage (Cont-frmw-4) the WER was 
18.96%. Comparison with the reference content acoustic 
models shows improvement, although some of the 
improvement achieved during the first three iterations was lost. 
This indicates that the use of the broad-endings training 
procedure is very reasonable in cases in which only a few 
training iterations are possible due to system limitations. 

In the third iteration of the third stage (Cont-frmw-7) the 
standard unsupervised acoustic model training was used. A 
WER of 18.69% was obtained. Compared to the reference 
content acoustic models, these acoustic models preserved the 
improvements achieved during the first two stages and also 
gained some room for additional improvements, which was 
lacking in the second half of the reference version (see Table 4). 

This probably results from the extended coverage of the 
acoustic-phonetic space that is one of the properties of the 
combined initial acoustic models. 

The final framework content acoustic model was Cont-
frmw-8. It achieved a WER of 18.02%, which is 1.48% 
absolute improvement over the reference content acoustic 
models. The framework content acoustic models outperformed 
the BNSI baseline acoustic models by 5.61%, which clearly 
shows the advantage of using additional spoken language 
resources automatically generated from untranscribed spoken 
content. The best overall result is still 2.40% less accurate than 
that of the solely PoliDat system. Because the third stage of the 
framework system showed no training procedure saturation, it 
can be assumed that an additional amount of untranscribed 
spoken content could further reduce this gap. Figure 1 shows 
the performance improvement graph for using untranscribed 
content. 

VI. Conclusion 

This paper presented a new framework for additional 
training of speech recognizer acoustic models using 
untranscribed spoken content. Two new methods were 
proposed in the scope of this framework: a combination of 
initial acoustic models based on a phoneme confusion matrix 
metric and unsupervised broad-endings acoustic model training. 
The evaluation of speech recognition results showed a 
significant decrease in WER compared to the reference content 
acoustic models. Another advantage of this framework is that it 
tends to produce acoustic models that can be used for further 
additional training with new untranscribed spoken content. The 
main disadvantage of this framework is that it adds two new 
methods to the setup. This results in increased complexity and 
the need for phonetic expertise. 

Future work will be focused on excluding the need for expert 
knowledge by introducing a data-driven metric and on further 
improving combined acoustic models, whereby the primary 
focus will be on the robustness of modeling the acoustic-
phonetic space. 
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