• Title/Summary/Keyword: acoustic boundary

Search Result 421, Processing Time 0.027 seconds

Study on Sound Field Analysis in Near-Field using Boundary Collocation Method; Decision of Optimum Points of Measurement for Line Array Sound Source with Weighting Value (경계배치법에 의한 근거리 음장 해석 기법 연구; 가중치를 갖는 선배열 음원의 최적 측정점 개수의 결정)

  • Kim, Won-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1752-1761
    • /
    • 2000
  • This paper describes the far-field estimation using the near-field measurement data. Measurement in far-field region gives us the acoustical characteristics of the source but in general measurement is made in near-field such as acoustic water tank or anechoic chamber, so far-field acoustical characteristics of the source should be predicted from near-field data. In this case, the number of measurement points in the near field which relates to the accuracy of the predicted field and the amount of data processing, should be optimized. Existing papers say that measurement points is proportional to kL and depends on geometry and directivity of the source. But they do not give us any definite criterion for the required number of measurement points. Boundary Collocation Method which is one of the far-field prediction methods, is analyzed based on Helmholtz integral equation and Green function and it has been found that the number of measurement points is optimized as 0.54kL which is about one half of the existing results.

  • PDF

Effective Syllable Modeling for Korean Speech Recognition Using Continuous HMM (연속 은닉 마코프 모델을 이용한 한국어 음성 인식을 위한 효율적 음절 모델링)

  • 김봉완;이용주
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.23-27
    • /
    • 2003
  • Recently attempts to we the syllable as the recognition unit to enhance performance in continuous speech recognition hate been reported. However, syllables are worse in their trainability than phones and the former have a disadvantage in that contort-dependent modeling is difficult across the syllable boundary since the number of models is much larger for syllables than for phones. In this paper, we propose a method to enhance the trainability for the syllables in Korean and phoneme-context dependent syllable modeling across the syllable boundary. An experiment in which the proposed method is applied to word recognition shows average 46.23% error reduction in comparison with the common syllable modeling. The right phone dependent syllable model showed 16.7% error reduction compared with a triphone model.

Noise Analysis of Discharge Valve in a Linear Compressor Considering Fluid-valve-piston Interactions (유체-밸브-피스톤 연성을 고려한 선형압축기 토출 밸브의 소음 해석)

  • Lee, Jun-Ho;Jeong, Weui-Bong;Han, Hyung-Suk;Lee, Hyo-Jae;Jeong, Sang-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.12
    • /
    • pp.1237-1243
    • /
    • 2009
  • A computational procedure to estimate the noise radiated from a discharge valve system in a linear compressor was discussed and established. This procedure was composed of three steps. As the first step, the dynamic behavior of the valve system was estimated taking into consideration of fluid-valve-piston interactions. As the second step, the flow characteristics of refrigerant in the discharge valve system were estimated through computational fluid dynamics applying the behaviors of the valves as moving boundary conditions. The variations of pressures and velocities of fluid were converted to quadrupole noise sources. As the final step, the boundary element method based on Helmholtz equation was applied to predict the radiated acoustic pressure. The computational results by the presented procedure were experimentally validated.

Vibration and Noise Analysis for Rotary Compressor in Medium-to-high Frequency Ranges (중고주파수 대역의 회전형 압축기 진동소음 해석)

  • Kwon, Hyun-Wung;Song, Jee-Hun;Hong, Suk-Yoon;Hwa, Jong-Hun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1033-1041
    • /
    • 2012
  • Power flow analysis(PFA) is introduced for solving the noise and vibration analysis of system structures in medium-to-high frequency ranges. The vibration analysis software, $PFADS_{C++}$ R4 based on power flow finite element method(PFFEM) and the noise prediction software, $NASPFA_{C++}$ R1 based on power flow boundary element method(PFBEM) are developed. In this paper, the coupled PFFE/PFBE method is used to investigate the vibration and radiated noise of the rotary compressor. PFFEM is employed to analyze the vibrational responses of the rotary compressor, and PFBEM is applied to analyze the radiation noise around rotary compressor. The vibrational energy of the structure is used as an acoustic intensity boundary condition of PFBEM. Numerical simulations are presented for the rotary compressor, and reliable results have been obtained.

Voice quality distinctions of the three-way stop contrast under prosodic strengthening in Korean

  • Jiyoung Jang;Sahyang Kim;Taehong Cho
    • Phonetics and Speech Sciences
    • /
    • v.16 no.1
    • /
    • pp.17-24
    • /
    • 2024
  • The Korean three-way stop contrast (lenis, aspirated, fortis) is currently undergoing a sound change, such that the primary cue distinguishing lenis and aspirated stops is shifting from voice onset time (VOT) to F0. Despite recent discussions of this shift, research on voice quality, traditionally considered an additional cue signaling the contrast, remains sparse. This study investigated the extent to which the associated voice quality [as reflected in the acoustic measurements of H1*-H2*, H1*- A1*, and cepstral peak prominence (CPP)] contributes to the three-way stop contrast, and how the realization is conditioned by prominence- vs. boundary-induced prosodic strengthening amid the ongoing sound change. Results for 12 native Korean speakers indicate that there was a substantial distinction in voice quality among the three stop categories with the breathiness of the vowel being the greatest after the lenis, intermediate after the aspirated, and least after the fortis stops, indicating the role of voice quality in the maintenance of the three-way stop contrast. Furthermore, prosodic strengthening has different effects on the contrast and contributes to the enhancement of the phonological contrast contingent on whether it is induced by prominence or boundary.

An Experimental Study of Radiated So from Elastic Thin Plate in a Turbulent Boundary Layer (난류 유동장 내에 놓인 탄성을 갖는 박판의 방사소음에 대한 실험적 연구)

  • Lee, Seung-Bae;Gwon, O-Seop;Lee, Chang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1327-1336
    • /
    • 2001
  • The structural modes driven by the low wave-number components of smooth elastic wall pressure provide a relatively weak coupling between the flow and the wall motion. If the elastic thin plate has any resonant mode whose wave-number of resonance coincides with $\omega$/U$\sub$c/, the power will be transmitted to those modes of vibration by the flows. We examine the problem in which the elastic thin plate is subject to pressure fluctuations under turbulent boundary layer. Measurements are presented of the frequency spectra of the near- and far-field pressures and radiated sound contributed by the various wave modes of the thin elastic plate. Dispersion equation for wave motions of elastic plate is used to investigate the effect of bending waves of relatively low wave number on radiated sound. The low wave-number motion of elastic plate is observed to have much less influence on the low-frequency energy of wall pressure fluctuations than that of the rediated sound. High amplitude events of the wall pressure are observed to weakly couple with high-frequency energy of radiated sound for case of low tension applied to the plate. The sound source localization is applied to the measurement of radiated sound by using acoustic mirror system.

Numerical Analysis of Rail Noise Regarding Surface Impedance of Ground by Using Wavenumber Domain Finite and Boundary Elements (지면 임피던스를 고려한 레일 방사 소음의 파수영역 유한요소/경계요소 해석)

  • Ryue, Jungsoo;Jang, Seungho
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.4
    • /
    • pp.289-300
    • /
    • 2015
  • An important source of noise from railways is rolling noise caused by wheel and rail vibrations induced by acoustic roughness at the wheel-rail contact. In conventional approaches to predicting rail noise, the rail is regarded as placed in a free space so that the reflection from the ground is not included. However, in order to predict rail noise close to the rail, the effect of the ground should be contained in the analysis. In this study the rail noise reflected from the ground is investigated using the wavenumber domain finite element and boundary element methods. First, two rail models, one using rail attached to the rigid ground and one using rail located above rigid ground, are considered and examined to determine the rigid ground effect in terms of the radiation efficiency. From this analysis, it was found that the two models give considerably different results, so that the distance between the rail and the ground is an important factor. Second, an impedance condition was set for the ground and the effect of the ground impedance on the rail noise was evaluated for the two rail models.

A Numerical Method for Analysis of the Sound and Vibration of Waveguides Coupled with External Fluid (외부 유체와 연성된 도파관의 진동 및 소음 해석 기법)

  • Ryue, Jung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.7
    • /
    • pp.448-457
    • /
    • 2010
  • Vibrations and wave propagations in waveguide structures can be analysed efficiently by using waveguide finite element (WFE) method. The WFE method only models the 2-dimensional cross-section of the waveguide with finite elements so that the size of the model and computing time are much less than those of the 3-dimensional FE models. For cylindrical shells or pipes which have simple cross-sections, the external coupling with fluids can be treated theoretically. For waveguides of complex cross-sectional geometries, however, numerical methods are required to deal with external fluids. In this numerical approach, the external fluid is modelled by the boundary elements (BEs) and connected to WFEs. In order to validate this WFE/BE method, a pipe submerged in water is considered in this study. The dispersion diagrams and point mobilities of the pipe simulated are compared to those that theoretically obtained. Also the acoustic powers radiated from the pipe are predicted and compared in both cases of air and water as an external medium.

Radiation characteristics analysis of Langevin transducer having a rim-fixed circular plate (주위가 고정된 원형 평판을 가진 란주반 트랜스듀서의 방사 특성 해석)

  • Jungsoon Kim;Jiwon Yoon;Moojoon Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.4
    • /
    • pp.391-399
    • /
    • 2024
  • In order to analyze the distribution of sound fields radiating from a circular plate vibrated by a Langevin transducer, a theoretical analysis model was derived. The boundary conditions of the driving area and fixed boundary area were appropriately applied to the equation of motion of the vibrating plate, which was derived by L. Rayleigh. By calculating the vibration displacement distributed on the surface of the vibrating plate using the derived analysis model and then calculating the sound field formed by the ultrasonic waves radiating from it, it was confirmed that the radiation characteristics vary significantly depending on the area of the vibrating plate. For comparison, a simulation of the same system was performed using the COMSOL program, a finite element method, and showed good agreement with the theoretical calculation results, confirming the effectiveness of the theoretical analysis model derived in thisstudy. It is expected that the theoretical analysis model derived from this study can be used in the design and development of related devices, such as in the ultrasonic chemistry field.

The Analysis of Amplitude and Phase Image for Acoustic Microscope Using Quadrature Technique (쿼드러춰 방식에 의한 초음파현미경의 진폭과 위상영상 분석)

  • Kim, Hyun;Jun, Kye-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.55-61
    • /
    • 1999
  • In this study, we have constructed the acoustic microscope using quadrature technique and analyzed the relative variation of image intensity and the quality of image by reconstructing the amplitude and phase image for surface defects with tiny hight variation. In this experiment, we have constructed the scanning acoustic microscope using the focused transducer with 3㎒ center frequency and the quadrature detector. And we have fabricated aluminum samples with round defects whose depth is different and reconstructed the amplitude and phase images for the samples. One sample has round defects with 2㎜ diameter and 100㎛ depth and the other has round defects with 4㎜ diameter and 5㎜ depth. In the result of line scanning for the sample with 100㎛ round defects, it has been shown that the variation rate of amplitude image intensity is 7% and the variation rate of phase image intensity is 89%. The phase image has better contrast than amplitude image for the sample. In contrast to this, the amplitude image has better contrast than phase image for the sample with 5㎜ depth's defects. Accordingly there is big difference between amplitude image and phase image for depth variation of defects whose boundary is 1 wavelength. Consequently the acoustic microscope using quadrature detector can be evaluated efficiently more than using envelope detector, for detecting defects which have height variation less than 1 wavelength. And also the phase image and the amplitude image can be used for detecting defects of tiny height variation with complimentary relation.

  • PDF