DOI QR코드

DOI QR Code

Radiation characteristics analysis of Langevin transducer having a rim-fixed circular plate

주위가 고정된 원형 평판을 가진 란주반 트랜스듀서의 방사 특성 해석

  • Received : 2024.04.14
  • Accepted : 2024.06.11
  • Published : 2024.07.31

Abstract

In order to analyze the distribution of sound fields radiating from a circular plate vibrated by a Langevin transducer, a theoretical analysis model was derived. The boundary conditions of the driving area and fixed boundary area were appropriately applied to the equation of motion of the vibrating plate, which was derived by L. Rayleigh. By calculating the vibration displacement distributed on the surface of the vibrating plate using the derived analysis model and then calculating the sound field formed by the ultrasonic waves radiating from it, it was confirmed that the radiation characteristics vary significantly depending on the area of the vibrating plate. For comparison, a simulation of the same system was performed using the COMSOL program, a finite element method, and showed good agreement with the theoretical calculation results, confirming the effectiveness of the theoretical analysis model derived in thisstudy. It is expected that the theoretical analysis model derived from this study can be used in the design and development of related devices, such as in the ultrasonic chemistry field.

란주반 트랜스듀서에 의해 강제 진동되는 원형 진동판으로부터 방사되는 음장의 분포를 해석하기 위하여 L. Rayleigh에 의해 도출된 진동 원판의 운동방정식을 기초로 구동 영역 및 고정 경계영역의 경계 조건을 적절히 적용하여 이론적 해석모델을 도출하였다. 도출된 해석모델을 이용하여 진동 원판의 표면에 분포하는 진동 변위를 계산하고 이로부터 방사되는 초음파에 의해 형성되는 음장을 계산한 결과, 진동 원판의 넓이에 따라 방사 특성이 크게 변함을 확인할 수 있었다. 비교를 위하여 유한요소법인 COMSOL 프로그램을 사용하여 동일한 시스템에 대한 시뮬레이션을 수행한 결과 이론 계산 결과와 좋은 일치를 보여 본 연구에서 도출한 이론적 해석모델의 유효성을 확인할 수 있었다. 본 연구에서 도출한 이론적 해석모델은 초음파 화학분야 등 관련 디바이스의 설계 및 개발에 활용될 수 있을 것으로 기대된다.

Keywords

Acknowledgement

이 논문은 정부의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.2022R1F1A1063797).

References

  1. K. Adachi and M. Saito, "Construction of torsional-vibration systems with a hollow cylindrical bolt-clamped langevin-type transducer and their application to ultrasonic plastic welding," Jpn. J. Appl. Phys. 34, 2735-2739 (1995). https://doi.org/10.1143/JJAP.34.2735
  2. C. Yun, T. Ishii, K. Nakamura, S. Ueha, and K. Akashi, "A high power ultrasonic linear motor using a longitudinal and bending hybrid bolt-clamped langevin type transducer," Jpn. J. Appl. Phys. 40, 3773-3776 (2001). https://doi.org/10.1143/JJAP.40.3773
  3. J. Tsujino, T. Ueoka, K. Hasegawa, Y. Fujita, T. Shiraki, T. Okada, and T. Tamura, "Newmethods of ultrasonic welding of metal and plastic materials," Ultrasonics, 34, 177-185 (1996). https://doi.org/10.1016/0041-624X(96)81780-X
  4. D. Yamaguchi, T. Kanda, and K. Suzumori, "An ultrasonic motor for cryogenic temperature using bolt-clamped Langevin-type transducer," Sens. Actuators A Phys. 184, 134-140 (2012). https://doi.org/10.1016/j.sna.2012.06.024
  5. S. Shi, W. Chen, and J. Liu, "A high speed ultrasonic linear motor using longitudinal and bending multi-mode bolt-clamped langevin type transducer," Proc. IEEE ICMA, 25-28 (2006).
  6. J. Kim and J. Lee, "Parametric study of bolt clamping effect on resonance characteristics of langevin transducers with lumped circuit models," Sensors, 20, 1952 (2020).
  7. J. Kim and M. Kim, "Experimental method for vibration analysis of a bolt-clamped ultrasonic transducer," Acoust. Sci. & Tech. 44, 1-8 (2023). https://doi.org/10.1250/ast.44.1
  8. J. Kim, H. Kim, and M. Kim, "Suggestion of an experimental method for optimization of flange point of a bolt-clamped langevin-type ultrasonic transducer" (in Korean), J. Acoust. Soc. Kr. 40, 270-277 (2021).
  9. W. Tangsopa, T. Keawklan, K. Kesngam, S. Ngaochai, and J. Thongsri, "Improved design of ultrasonic cleaning tank using harmonic response analysis in ANSYS," IOP Conf. Ser.: Earth Environ. Sci. 159, 012042 (2018). https://doi.org/10.1088/1755-1315/159/1/012042
  10. W. Tangsopa and J. Thongsri, "Development of an industrial ultrasonic cleaning tank based on harmonic response analysis," Ultrasonics, 91, 68-76 (2019). https://doi.org/10.1016/j.ultras.2018.07.013
  11. H. Lais, P. Lowe, T. Gan, and L. Wrobel, "Numerical modelling of acoustic pressure fields to optimize the ultrasonic cleaning technique for cylinders," Ultrason. Sonochem. 45, 7-16 (2018). https://doi.org/10.1016/j.ultsonch.2018.02.045
  12. G. Blanch, "Mathematical Functions With Formulas, Graphs, and Mathematical Tables," in handbook of National Bureau of Standards Applied Mathematics Series, edited by M. Abramowitz and I. Stegun (U.S. government printing office, Washington, 1972).
  13. Y. Cheung, L. Tham, and W. Li, "Free vibration and static analysis of general plate by spline finite strip," Comput. Mech. 3, 187-197 (1988). https://doi.org/10.1007/BF00297445
  14. B. Singh and D. Tyagi, "Transverse vibrations of an elliptic plate with variable thickness," J. Sound Vib. 99, 379-391 (1985). https://doi.org/10.1016/0022-460X(85)90375-X
  15. T. Wah, "Vibration of circular plates," J. Acoust. Soc. Am. 34, 275-281 (1962). https://doi.org/10.1121/1.1928110
  16. G. C. Pardoen, "Static, vibration and buckling analysis of axisymmetric circular plates using finite elements," Comput. Struct. 3, 355-375 (1973). https://doi.org/10.1016/0045-7949(73)90023-0
  17. G. C. Pardoen, "Asymmetric vibration and stability of Circular plates," Comput. Struct. 9, 89-95 (1978). https://doi.org/10.1016/0045-7949(78)90062-7
  18. P. A. A. Laura, J. C. Paloto, and R. D. Santos, "A note on the vibration and stability of a circular plate elastically restrained against rotation," J. Sound Vib. 41, 177-180 (1975). https://doi.org/10.1016/S0022-460X(75)80095-2
  19. P. A. A. Laura and R. Gelos, "Further results on the vibration and stability of a circular plate elastically restrained against rotation," J. Sound Vib. 41, 388-390 (1975). https://doi.org/10.1016/S0022-460X(75)80187-8
  20. P. A. A. Laura, L. E. Luisoni, and A. Arias, " Antisymmetirc modes of vibration of a circular plate elastically restrained against rotation and subjected to a hydrostatic state of in-plane stress," J. Sound Vib. 47, 433-437 (1976). https://doi.org/10.1016/0022-460X(76)90952-4
  21. P. A. A. Laura, J. L. Pombo, and L. E. Luisoni,"Forced vibrations of a circular plate elastically restrained against rotation," J. Sound Vib. 45, 225-235 (1976). https://doi.org/10.1016/0022-460X(76)90597-6
  22. J. W. Strutt andB. Rayleigh, The Theory of Sound, Vol 1 (Macmillan, London, 1894), pp. 352-372.