• Title/Summary/Keyword: acid strength

Search Result 1,668, Processing Time 0.024 seconds

Characteristics of Biodegradable Plastic Vegetation Mats (생분해성 플라스틱 식생매트의 특성)

  • Park, Jin-O;Kim, Ha-Seog;Lee, Sea-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.112-117
    • /
    • 2016
  • This research compared the tensile performance of the vegetation mat, which was developed byu using the rapidly growing biodegradable plastic, Poly Lactic Acid(PLA), according to the biodegradation period. The test applied the method defined by Korean Standard KS. In the result of experiment using single-material PLA mesh and PLA plastic, the tensile strength and molecular weight were inverse-proportional to the 5 months of biodegradation period. The thickness of PLA mesh was increased by 11.2~13.4% while the tensile strenth of it was reduced by 32.4~55.4%. The tensile strength and molecular weight of PLA plastic were also reduced over time. However, the tension test of vegetation mat comprised of PLA mesh, non-woven fabric (including seeds), and jute net didn't have specific tendency.

Quality of Recycled Fine Aggregate using Neutral Reaction with Sulfuric Acid and Low Speed Wet Abrader

  • Kim, Ha-Seog;Lee, Kyung-Hyun;Kim, Jin-Man
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.490-502
    • /
    • 2012
  • The use of recycled aggregate, even for low-performance concrete, has been very limited because recycled aggregate, which contains a large amount of old mortar, is very low in quality. To produce a high-quality recycled aggregate, removing the paste that adheres to the recycled aggregate is very important. We have conducted research on a complex abrasion method, which removes the component of cement paste from recycled fine aggregate by using both a low-speed wet abrasion crusher as a mechanical process and neutralization as chemical processes, and well as research on the optimal manufacturing condition of recycled fine aggregates. Subsequently, we evaluated the quality of recycled fine aggregate manufactured using these methods, and tested the specimen made by this aggregate. As a result, it was found that recycled fine aggregates produced by considering the aforementioned optimal abrasion condition with the use of sulfuric acid as reactant showed excellent quality, recording a dry density of 2.4 and an absorption ratio of 2.94. Furthermore, it was discovered that gypsum, which is a reaction product occurring in the process, did not significantly affect the quality of aggregates. Furthermore, the test of mortar using this aggregate, when gypsum was included as a reaction product, showed no obvious retarding effect. However, the test sample containing gypsum recorded a long-term strength of 25.7MPa, whereas the test sample that did not contain gypsum posted a long-term strength of 29.4MPa. Thus, it is thought to be necessary to conduct additional research into the soundness and durability because it showed a clear reduction of strength.

Analysis of Chemistry Textbook Content and Teachers' Recognitions about Ionization and Ionization constant of Strong Acid (강산의 이온화도와 이온화 상수에 대한 화학 교과서 내용 및 교사들의 인식 분석)

  • Paik, Seoung-Hey;Go, Hyung-Suk;Jeon, Min-Cheol
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.2
    • /
    • pp.279-288
    • /
    • 2013
  • In this study, we analyzed the values of ionization and ionization constants in the chemistry textbooks developed during 1945-2009 year. The chemistry teachers compared strength of strong acids in aqueous solution by questionnaire. In the questionnaire, we searched chemistry teachers' cognitions about the discordance reason of ionization constant formulation and the values in the textbooks. The subjects were 46 chemistry teachers. As results, the teachers compared the strength of strong acids in aqueous solution based on the ionization and ionization constant values in the textbooks. They didn't notice the problem of discordance of ionization constant formulation and the values in the textbooks. Even though they recognized the problem, they could not find the solution, and thought the problem arrived by experiment error or measurement error.

Interfacial Adhesion Properties of Surface Treated Polyarylate Fiber with Polyethylene Naphthalate (폴리아릴레이트 섬유의 표면처리에 의한 폴리에틸렌 나프탈레이트 수지와의 계면접착특성)

  • Yong, Da Kyung;Choi, Han Na;Yang, Ji Woo;Lee, Seung Goo
    • Journal of Adhesion and Interface
    • /
    • v.13 no.1
    • /
    • pp.24-30
    • /
    • 2012
  • Morphological changes of polyarylate (PAR) fiber treated with formic acid and ultraviolet (UV) were observed by using a scanning electron microscope (SEM) and an atomic force microscope (AFM). The results were analysed by using root mean square (RMS) roughness. In addition, the chemical changes of surface was investigated using contact angle and the interfacial adhesive strength between PAR fiber and PEN (Polyethylene naphthalate) matrix was calculated using the Pull-out test results. As the acid treatment concentration and UV irradiation time increased, cracks and pores were produced on the PAR fiber surface. Due to the roughness increased, the contact angle was decreased. For this reason, RMS roughness of PAR fiber was increased and the interfacial adhesive strength between the PAR fiber and PEN matrix was improved. The increase of interfacial adhesive strength was responsible for the increase of surface area which have cracks and pores.

Studies on Preparation and Performance of Poly(acrylonitrile) Nano-composite Hollow Fiber Membrane through the Coating of Hydrophilic Polymers (친수성 고분자의 코팅을 통한 Poly(acrylonitrile) 나노복합중공사막의 제조 및 성능 연구)

  • Park, Cheol Oh;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.29 no.3
    • /
    • pp.140-146
    • /
    • 2019
  • In this study, a selective layer of poly styrene sulfonic acid (PSSA) and polyethyleneimine (PEI) was formed by layer-by-layer method onto a porous polyacrylonitrile (PAN) hollow fiber membrane as the suppoter membrane. The salting out method was used by adding Mg salt to the coating solution. Several experimental conditions of the ionic strength, polymer concentration, and coating time were investigated, and the flux and rejection were measured at the operating pressure of 2 atm for 100 mg/L of NaCl, $MgCl_2$, and $CaSO_4$ as the feed solution. The membranes coated with PSSA 20,000 ppm, coating time 3 minutes, ionic strength 1.0, PEI 30,000 ppm, coating time 1 minute, and ionic strength 0.1 were observed the best. In the 100 ppm NaCl, $MgCl_2$, and $CaSO_4$ feed solutions, the flux of 20.4, 19.4, and 18.7 LMH, and the rejection of 67, 90, and 66.6%, respectively.

Improved Hydrolysis Resistance of Biodegradable Mulching Films (생분해성 멀칭필름의 내가수분해성 향상)

  • Sim, Jae-Ho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.349-354
    • /
    • 2022
  • This research was conducted in order to improve the hydrolysis resistance and mechanical properties of a resin compound and biodegradable mulching film, produced through the use of PBAT(Poly Butylene Adipate-co-Terephthalate) and PLA(Poly Lactic Acid). Various ratios of chain extenders and mechanical properties according to the annealing temperature conditions were investigated. The annealing process showed that compound resin can improve the crystallization capacity. In addition, incorporation of the chain extender was shown to improve and increase the tensile strength and hydrolysis resistance of the film. In the case of 0.6phr chain extender, the tensile strength was 383.0Kgf/cm2, which was improved by 155% compared to the control films. When the blow up ratio(BUR) was 2.5, the optimal tensile strength of the film increased greatly, expanding up to 379.0/195.2kgf/cm2 in the both machine direction (MD) and transverse direction (TD).

Manufacture of Continuous Glass Fiber Reinforced Polylactic Acid (PLA) Composite and Its Properties (연속 유리섬유 강화 폴리유산 복합재료의 제조 및 물성)

  • Roh, Jeong U;Lee, Woo Il
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.230-234
    • /
    • 2013
  • The continuous glass fiber reinforced poly-lactic acid (PLA) composite was manufactured by direct melt impregnation. The mechanical and thermal properties of continuous glass fiber reinforced PLA composite were observed. Measured properties were compared with the reference values of neat PLA and the injection molded glass fiber/ PLA composite. The continuous glass fiber reinforced PLA composite having a fiber volume fraction of 27.7% shows enhanced tensile strength of 331.1 MPa, flexural strength of 528.6 MPa, and flexural modulus of 24.0 GPa. The enhanced heat deflection temperature (HDT) and the increased cystallinity were also observed. The degree of impregnation as a function of pulling speed was also assessed. The degree of impregnation at the pulling speed of 5 m/min was over 90% in this research.

The Effects of the Coplymerization Conditions in Synthesis of Polycarboxylic Type Superplasticizer on Interfacial Properties and on Cement Mortar Fluidity (Polycarboxylate계 콘크리트 유동화제의 합성에 있어서 공중합 조건에 따른 계면물성 변화 및 이의 시멘트 몰탈의 물성에 미치는 영향)

  • Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.463-468
    • /
    • 2010
  • The polycarboxylic (PC) type concrete superplasticizer was synthesized. The effects of ethylene oxide group number and its molecular weight on the properties of the polycarboxylic type concrete superplasticizer and the concrete motar properties were studied. To investigated of the interfacial properties of the premixed-concrete with the superplasticizer, the type and the amount of polyethylene glycol, meta acrylate added, and type of the initialization agent were studied. Also the interfacial properties of the superplasticizer aqueous phase, the wettability on the cement particle, the fluidity of the cement mortar, and the strength properties of the concrete were measured. For a high fluidity of the cement mortar and a high strength of concrete, a low value of the surface tension and contact angle were required for PC. To have a good performance for PC, the reaction condition of 1.3 mol ratio of MA against to MPEG was suitable with KSP initiator.

A Study on the Development of Bamboo/PLA Bio-composites for 3D Printer Filament (3D 프린터 필라멘트 제작용 대나무/PLA 바이오복합재료 개발 연구)

  • Shin, Yoon Jung;Yun, Hyeon Ju;Lee, Eun Ju;Chung, Woo Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.107-113
    • /
    • 2018
  • In this study, the 3D printer filaments were manufactured by using the representative eco-friendly material, bio-composite. Bio-composites were made by incorporating biodegradable polymer of poly lactic acid (PLA) as the matrix and bamboo flour as the filler. The bamboos which were used in this experiment are Phyllostachys bambusoides, Phyllostachys nigra var. henonis, and Phyllostachys pubescen grown in Damyang district in Korea, and the mixture ratio between bamboo flour and PLA were set 10/90, 20/80, 30/70 by weight standard. Also, tensile strength of bamboo/PLA bio-composites manufactured with three kinds of bamboo were estimated and compared. In this result, the highest estimated bio-composites was Phyllostachys bambusoides flour/PLA which mixture ratio was 10/90, that is, it was the most suitable bamboo/PLA bio-composites for manufacturing 3D printer filament.

The Preparation and Physicochemical Characteristics of Covalently Cross-Linked SPEEK/HPA Composite Membranes for Water Electrolysis (수전해용 공유가교 SPEEK/HPA 복합막의 제조 및 물리화학적 특성)

  • Hwang, Yong-Koo;Lee, Kwang-Mun;Woo, Je-Young;Chung, Jang-Hoon;Moon, Sang-Bong;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.2
    • /
    • pp.95-103
    • /
    • 2009
  • In order to improve the electrochemical, mechanical and electrocatalytic characteristics, engineering plastic of polyether ether ketone (PEEK) as polymer matrix was sulfonated (SPEEK) and the organic-inorganic blend composite membranes has been prepared by loading heteropoly acids (HPAs), including tungstophosphoric acid (TPA), molybdophosphoric acid (MoPA), and tungstosilicic acid (TSiA). And then these were covalently cross-linked (CL-SPEEK/HPA) as the electrolyte and MEA of polymer electrolyte membrane electrolysis (PEME). As a result, the optimum reaction conditions of CL-SPEEK/HPA was established and the electrochemical characteristics such as ion conductivity ($\sigma$) were in the order of magnitude: CL-SPEEK /TPA30 (${\sigma}=0.128\;S/cm^{-1}$) < /MoPA40 (${\sigma}=0.14\;S/cm^{-1})$ < /TSiA30 (${\sigma}=0.22\;S/cm^{-1}$) at $80^{\circ}C$, and mechanical characteristics such as tensile strength: CL-SPEEK /TSiA30 $\fallingdotseq$ /MoPA40 < /TPA30. Consequently, in regards of above characterisitics and oxidation durability, the CL-SPEEK/TPA30 exhibited a better performance in PEME than the others, but CL-SPEEK/MoPA40 showed the best electrocatalytic activity of cell voltage 1.71 V among the composite membranes. The dual effect of higher proton conductivity and electrocatalytic activity with the addition of HPAs, causes a synergy effect.