DOI QR코드

DOI QR Code

A Study on the Development of Bamboo/PLA Bio-composites for 3D Printer Filament

3D 프린터 필라멘트 제작용 대나무/PLA 바이오복합재료 개발 연구

  • Shin, Yoon Jung (Department of Wood Science & Engineering, Chonnam National University) ;
  • Yun, Hyeon Ju (Department of Wood Science & Engineering, Chonnam National University) ;
  • Lee, Eun Ju (Department of Wood Science & Engineering, Chonnam National University) ;
  • Chung, Woo Yang (Department of Wood Science & Engineering, Chonnam National University)
  • Received : 2017.12.20
  • Accepted : 2018.01.15
  • Published : 2018.01.25

Abstract

In this study, the 3D printer filaments were manufactured by using the representative eco-friendly material, bio-composite. Bio-composites were made by incorporating biodegradable polymer of poly lactic acid (PLA) as the matrix and bamboo flour as the filler. The bamboos which were used in this experiment are Phyllostachys bambusoides, Phyllostachys nigra var. henonis, and Phyllostachys pubescen grown in Damyang district in Korea, and the mixture ratio between bamboo flour and PLA were set 10/90, 20/80, 30/70 by weight standard. Also, tensile strength of bamboo/PLA bio-composites manufactured with three kinds of bamboo were estimated and compared. In this result, the highest estimated bio-composites was Phyllostachys bambusoides flour/PLA which mixture ratio was 10/90, that is, it was the most suitable bamboo/PLA bio-composites for manufacturing 3D printer filament.

본 연구에서는 대표적인 친환경 소재인 바이오복합재료(bio-composite)를 이용한 3D 프린터 필라멘트를 제작하였다. 바이오복합재료의 제조를 위해 매트릭스로는 생분해성 고분자인 poly lactic acid (PLA)를 그리고 충전제로는 대나무 분말(Bamboo flour)을 사용하였다. 대나무는 담양에서 생산되는 왕대, 솜대, 죽순대를 이용하였으며, 대나무 분말과 PLA의 혼합비율은 중량기준 10/90, 20/80, 30/70으로 설정하였다. 3개 죽종으로 제조한 대나무/PLA 바이오복합재료의 기본물성 평가를 위해 인장강도를 비교하였다. 그 결과, 왕대 분말/PLA의 비율이 10/90일 때의 인장강도가 7.12 MPa로 가장 높게 나타남으로써 3D 프린터 필라멘트 제작용 대나무/PLA 바이오복합재료로 가장 적합한 것으로 판단되었으며, 현미경 관찰 결과, 죽분의 함량을 더욱 낮춘 필라멘트를 제작할 필요성이 있다고 판단된다.

Keywords

References

  1. ASTM D638-08. Standard Test Method for Tensile Properties of Plastics, American Society for Testing and Materials west conshohoken, PA. United states.
  2. Le Duigou, A.. Castro, M., Bevan, R.. Martin, N. 2016. 3D printing of wood fiber biocomposites: From mechanical to actuation functionality. Journal of Materials & Design 96: 106-114. https://doi.org/10.1016/j.matdes.2016.02.018
  3. Lu, B.H., Li, D.C., Tian, X.Y. 2015. Development Trends in Additive Manufacturing and 3D printing. Journal of Engineering 1(1): 85-89.
  4. Cho, Y.B., Cho, D.H. 2012. Effect of Bamboo Fiber Grinding on the Mechanical, Thermal, Impact, and Water Absorption Properties of Bamboo/Poly (lactic acid) Biocomposites. Journal of Adhesion and Interface 13(3): 121-130. https://doi.org/10.17702/jai.2012.13.3.121
  5. Cho, Y.B., Cho, D.H. 2016. Water Treatment Effect of Bamboo Fiber on the Mechanical Properties, Impact Strength, and Heat Deflection Temperature of Bamboo Fiber/PLA Biocomposites. Journal of Adhesion and Interface 17(3): 96-103. https://doi.org/10.17702/jai.2016.17.3.96
  6. Carrasco, F., Pages, P., Gamez Perez, J., Santana, O.O., Maspoch, M.L. 2010. Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Journal of Polymer Degradation and Stability 95(2): 116-125. https://doi.org/10.1016/j.polymdegradstab.2009.11.045
  7. Dong, J., Li, M.C., Zhou, L., Lee, S.Y., Mei, C.G., Xu, X.W., Qinglin, W. 2017. The influence of grafted cellulose nanofibers and postextrusion annealing treatment on selected properties of poly (lactic acid) filaments for 3D printing. Journal of Polymer Physics 55(11): 847-855. https://doi.org/10.1002/polb.24333
  8. Kang, K.Y., Yoon, S.L., Jeon, K.S., Park, M.S., Park, N.C. 2011. A study on the Utilization of Ingredients and Fibers from Korean Bamboo Species in Value-added Industry: Part 1. -Changes in Chemical Composition of Moso, Henon, and Timber Bamboo According to the Bamboo Ages. Journal of Technical Association of the Pulp and Paper Industry 43(3): 43-51.
  9. Kang, K.Y., Yoon, S.L., Jeon, K.S. 2012. A Study on the Utilization of Ingredients and Fibers from Korean Bamboo Species in Value-added Industry: Part 2. -Preparation and Characterization of Bamboo Fibers-. Journal of Technical Association of the Pulp and Paper Industry 44(4): 69-76. https://doi.org/10.7584/ktappi.2012.44.4.069
  10. Kim, C.H., Kim, K.J., Eom, T.J. 2008. Properties of WPC Prepared with Various Size and Amount of Wood Particle. Journal of Technical Association of the Pulp and Paper Industry 40(3): 59-64.
  11. Lee, J.H., Lee, B.G., Park, K.H., Bang, D.S., Jhee, K.H., Sin, M.C. 2011. Preparation and Characterization of Wood Polymer Composite by a Twin Screw Extrusion Elastomers and Composites. Journal of Rubber 46(3): 211-217.
  12. Lee, S.N., Lee, B.H., Kim, H.J., Kim, S.M Eom, Y.G. 2009. Properties Evaluation of Bio-Composite by Content and Particle Size of Bamboo Flour. Journal of Korean Society Of Wood Science and Technology 37(4): 310-319.
  13. Ryoko, T., Duc, M.V., Kazuya, O.B., Tatsuya, T., Toru, F., Fujiura, T. 2008. How to improve mechanical properties of polylactic acid with bamboo fibers. Journal of Materials Science 43(2): 775-787. https://doi.org/10.1007/s10853-007-1994-y
  14. So, W.T., Kim, Y.S., Chung, W.Y., Lee, H.W. 1999. Wood Characteristics of Phyllostachys bambusoides, Phyllostachys nigra var. henonis, and Phyllostachys pubescens Grown in Damyang District. Journal of Wood Science and Technology 27(2): 7-14.