DOI QR코드

DOI QR Code

Improved Hydrolysis Resistance of Biodegradable Mulching Films

생분해성 멀칭필름의 내가수분해성 향상

  • Sim, Jae-Ho (Dept. of Advanced Materials and Chemical Engineering, Halla University)
  • 심재호 (한라대학교 신소재화학공학과)
  • Received : 2022.01.26
  • Accepted : 2022.03.08
  • Published : 2022.03.31

Abstract

This research was conducted in order to improve the hydrolysis resistance and mechanical properties of a resin compound and biodegradable mulching film, produced through the use of PBAT(Poly Butylene Adipate-co-Terephthalate) and PLA(Poly Lactic Acid). Various ratios of chain extenders and mechanical properties according to the annealing temperature conditions were investigated. The annealing process showed that compound resin can improve the crystallization capacity. In addition, incorporation of the chain extender was shown to improve and increase the tensile strength and hydrolysis resistance of the film. In the case of 0.6phr chain extender, the tensile strength was 383.0Kgf/cm2, which was improved by 155% compared to the control films. When the blow up ratio(BUR) was 2.5, the optimal tensile strength of the film increased greatly, expanding up to 379.0/195.2kgf/cm2 in the both machine direction (MD) and transverse direction (TD).

본 연구는 PBAT(Poly Butylene Adipate-co-Terephthalate)와 PLA(Poly Lactic Acid)를 사용하여 수지의 컴파운드와 생분해성 멀칭필름의 내가수분해성과 기계적 물성을 향상시키기 위하여 수행되었다. 어닐링 온도조건에 따른 다양한 비율의 사슬연장제와 기계적 물성을 검토하였다. 어닐링공정은 컴파운드 수지의 결정화 능력을 향상시킬수 있음을 나타내었다. 사슬연장제의 첨가로 인장강도를 향상시킬 수 있었으며, 필름의 내가수분해성도 증가하였다. 사슬연장제 0.6phr. 첨가의 경우에 인장강도는 383.0Kgf/cm2으로 대조 필름과 비교하여 155% 향상되었다. 팽창비(BUR)가 2.5일 때, 필름의 최적 인장강도는 기계 방향(MD)과 가로 방향(TD) 에서 379.0/195.2kgf/cm2까지 크게 증가하였다.

Keywords

Acknowledgement

이 논문은 한라대학교 교비학술연구비(2021년, 자율형)에 의하여 연구되었음.

References

  1. L. Jiang, M.P. Wolcott, J. Zhang, "Study of biodegradable Polylactide/Poly(butyleneadipate-co -teraphthalate) Blends", Biomacromolecules, Vol. 7(1), pp. 199-207, 2006. https://doi.org/10.1021/bm050581q
  2. J.H. Sim, S.J. Kim, J.H. Shim, "The Effic of Nucleating Agent for Improving Heat Resistance Properties of L-Lactide Polymer", J. of the Korean-Industrial cooperation Society, Vol. 13(11), pp. 5595-5600, 2012. https://doi.org/10.5762/KAIS.2012.13.11.5595
  3. K.S. Kang and B.Y. Shin, "Modification of PLA Irradiation of Beam in the Presence of Functional Monomer : Rheological and Thermal Properties", Korean Chem. Eng. Res., Vol. 46(1), pp. 124-130, 2007. https://doi.org/10.1021/ie060857q
  4. M. Nikolic and J. Djonlagic, "Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene adipate)", Polymer Degradation & Stability, vol. 74, pp .263-270, 2001. https://doi.org/10.1016/S0141-3910(01)00156-2
  5. W.M. Stevels, M.K, Ankone, P.J. Dijkstra, and J. Feijen, "Stereocomplex formation in ABA triblock copolymers of poly(lactide) (A) and poly(ethylene glycol) (B)", Macromol. Chem. Phys. Vol. 196(11), pp. 3687-3694, 1995. https://doi.org/10.1002/macp.1995.021961121
  6. B. Amita, G. Rahulk, B. Sati. N, H.J. Choi, "compatibility of biodegradable poly(lactic acid) (PLA) and poly(butylene succinate)(PBS) blend for packaging application", Korea-Australia rheology journal, Vol. 19(3), pp. 125-131, 2017.
  7. K.S. Kang, B.S. Kim, W.Y. Jang and B.Y. Shin, "Morphology, Thermal and Mechanical Properties of Poly(lactic acid)/Poly(butylene adipate-coterephthalate)/CMPS Blends", Polymer(Korea), Vol. 33(2), pp. 164-168, 2009.
  8. T.J. Kim, T. H. Kim, S. G. Kim and K. H. Seo, "Structural, Thermal, and Mechanical Properties of PLA/PBAT/MEA Blend", Polymer(Korea), Vol. 40(3), pp. 371-379, 2016. https://doi.org/10.7317/pk.2016.40.3.371
  9. Y.J. Du, P.J. Lemstra, A.J. Nijenhuis, HA.M. Aert and C. Bastiaansen, "ABA Type Copolymers of Lactide with Poly(ethylene glycol). Kinetic, Mechanistic, and Model Studies", Macromolecules, Vol. 28(7), pp. 2124-2132, 1993. https://doi.org/10.1021/ma00111a004
  10. Y-X Weng, Y-J Jin, Q-Y Meng, L. Wang, M. Zhang, Y-Z Wang, "Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions", Polymar Testing, Vol. 32(5), pp. 918-926, 2013. https://doi.org/10.1016/j.polymertesting.2013.05.001
  11. D. Kim, C.H. Min, H.Y. Park, et al., "Modification of PLA/PBAT blends and thermal/mechanical properties", Korean Soc. Ind. Eng. Chem. Vol. 24, pp. 104-111, 2013.
  12. A.M. Harris and E.C. Lee, "Improving Mechanical Performance of Injection Molded PLA by Controlling Crystallinity" J. of Appl.Polym. Sci., Vol. 107(4), pp. 2246-2255, 2008. https://doi.org/10.1002/app.27261
  13. Y.W. Kim and M.S. Kim, "Polyester Film", Polym. Sci. Tech., Vol. 3(3), pp. 185-209, 1992.
  14. L.C. Arruda, M. Magaton et al. "Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends", Polym. Test, Vol. 43, pp. 27-37, 2015. https://doi.org/10.1016/j.polymertesting.2015.02.005
  15. J. Kim, M-S Kim and B-W Kim, "Study on isothermal crystallization behavior and surface properties of non-oriented PLA film with annealing temperature", Korean Chem. Eng. Res., Vol. 49(5), pp. 644-616, 2011. https://doi.org/10.9713/kcer.2011.49.5.644