Browse > Article

The Preparation and Physicochemical Characteristics of Covalently Cross-Linked SPEEK/HPA Composite Membranes for Water Electrolysis  

Hwang, Yong-Koo (Department of Chemical Engineering, Myongji Univ.)
Lee, Kwang-Mun (Department of Chemical Engineering, Myongji Univ.)
Woo, Je-Young (Department of Chemical Engineering, Myongji Univ.)
Chung, Jang-Hoon (Department of Chemistry, Myongji Univ.)
Moon, Sang-Bong (Elchem Tech Co., Ltd.)
Kang, An-Soo (Department of Chemical Engineering, Myongji Univ.)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.20, no.2, 2009 , pp. 95-103 More about this Journal
Abstract
In order to improve the electrochemical, mechanical and electrocatalytic characteristics, engineering plastic of polyether ether ketone (PEEK) as polymer matrix was sulfonated (SPEEK) and the organic-inorganic blend composite membranes has been prepared by loading heteropoly acids (HPAs), including tungstophosphoric acid (TPA), molybdophosphoric acid (MoPA), and tungstosilicic acid (TSiA). And then these were covalently cross-linked (CL-SPEEK/HPA) as the electrolyte and MEA of polymer electrolyte membrane electrolysis (PEME). As a result, the optimum reaction conditions of CL-SPEEK/HPA was established and the electrochemical characteristics such as ion conductivity ($\sigma$) were in the order of magnitude: CL-SPEEK /TPA30 (${\sigma}=0.128\;S/cm^{-1}$) < /MoPA40 (${\sigma}=0.14\;S/cm^{-1})$ < /TSiA30 (${\sigma}=0.22\;S/cm^{-1}$) at $80^{\circ}C$, and mechanical characteristics such as tensile strength: CL-SPEEK /TSiA30 $\fallingdotseq$ /MoPA40 < /TPA30. Consequently, in regards of above characterisitics and oxidation durability, the CL-SPEEK/TPA30 exhibited a better performance in PEME than the others, but CL-SPEEK/MoPA40 showed the best electrocatalytic activity of cell voltage 1.71 V among the composite membranes. The dual effect of higher proton conductivity and electrocatalytic activity with the addition of HPAs, causes a synergy effect.
Keywords
Organic-inorganic composite membrane; SPEEK; HPA(heteropolyacid); PEME; Covalently cross-link; Proton conductivity; Tensile strength-elongation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 P. Xing, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko, K. Wang, and S. Kaliaguine, 'Synthesis and Characterization of Sulfonated Poly(ether ether ketone) for Proton Exchange Membranes', J. Membr. Sci, Vol. 229, No. 1-2, 2004, pp. 95-106   DOI   ScienceOn
2 J. A. Seo, D. K. Roe, J. K. Koh, and J. H. Kim, Preparation and Characterization of Proton Conducting Composite Membranes From P (VDF_CTFE)-g-PSPMA Graft Copolymer and Heteropolyacid, Kor. Membr. J., Vol. 10, No 1, 2008, pp. 20-25
3 R. J. Stanis, Mei-Chen Kuo, A. J. Rickett, J. A. Turner, A. M. Herring, 'Investigation into the activity of heteropolyacids towards the oxygen reduction reaction on PEMFC cathodes', Electrochimica Acta, Vol. 53, No. 28, 2008, pp. 8277-8286   DOI   ScienceOn
4 황용구, '수전해용 SPEEK 전해질 막의 제조시 HPA 첨가제의 영향', 명지대학교 대학원, 박사학위논문, 용인, 2008
5 F. Meng, N. V. Aieta, S. F. Dec, J. L. Horan, D. Williamson, M. H. Frey, P. Pham, J. A. Turner, M. A. Yandrasits, S. J. Hamrock, A. M. Herring, 'Structural and transport effects of doping perfluorosulfonic acid polymers with the heteropoly acids, $H_3PW_{12}O_{40}$ or $H_4SiW_{12}O_{40}$, Electrochimica Acta, Vol. 53, No. 3, 2007, pp. 1372-1378   DOI   ScienceOn
6 장두영, 장인영, 권오환, 김경언, 황갑진, 강안수, '함침-환원법으로 제조된 수전해용 Pt-SPE 전극촉매의 특성', 한국수소 및 신에너지학회 논문집, Vol. 17, No. 4, 2006, pp.440-447   과학기술학회마을   ScienceOn
7 S. M. J. Zaidi, S. D. Mikhailenko, G. P. Robertson, and M. D. Guiver, 'Proton Conducting Composite Membrane from Polyether ether ketone and Hetero-polyacids for Fuel Cell Applications', J. Memb. Sci., Vol. 173, No. 1, 2000, pp. 17-34   DOI   ScienceOn
8 F. G. Helfferich, 'Ion Exchange', MaGraw-Hill Book Co., New York, 1962
9 I. Y. Jang, O. H. Kweon, K. E. Kim, G. J. Hwang, S. B. Moon, A. S. Kang, 'Covalently cross-linked sulfonated poly (ether ether ketone)/ tungstophos phoric acid composite membranes for water electrolysis application', J,. Power Sources Vol. 181, No. 1, 2008, pp. 127-134   DOI   ScienceOn
10 M. L. Ponce, L. Prado, B. Ruffmann, K. Richau, R. Mohr, S.P. Nunes, 'Reduction of methanol permeability in polyetherketone-heteropolyacid membranes', J. Memb. Sci, Vol. 217, No. 1-2, 2003, pp. 5-15   DOI   ScienceOn
11 N. E. Dowling, 'Mechanical Behaviour of Materials', Prentice-Hall, New Jersey (1993)
12 C. Arnold and R. A. Assink, 'Structure- Property Relationships of Anionic Exchange Membranes for Fe/Cr Redox Storage Batteries', J. Appl. Polym. Sci., Vol. 29, No. 7, 1984, pp. 2317-2330   DOI   ScienceOn
13 N. Fujiwara, K. Yasuda, T. Ioroi, Z. Siroma and Y. Miyazaki, 'Preparation of platinumruthenium onto solid polymer electrolyte membrane and the application to a DMFC anode', Electrochimica Acta, Vol. 47, 2002, pp. 4079-4084   DOI   ScienceOn
14 Y. S. Kim, F. Wang, M. Hickner, T. A. Zawodzinski, and J. E. McGrath, 'Fabrication and characterization of heteropolyacid/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications', J. Memb. Sci., Vol. 212, No. 1-2, 2003, pp. 263-282   DOI   ScienceOn
15 I. Y. Jang, O. H. Kweon, K. E. Kim, G. J. Hwang, S. B. Moon, A. S. Kang, 'Application of polysulfone (PSf)– and polyether ether ketone (PEEK)–tungstophosphoric acid (TPA) composite membranes for water electrolysis', J. Memb. Sci., Vol. 322, No. 1, 2008, pp. 154-161   DOI   ScienceOn