• Title/Summary/Keyword: acetaldehyde concentration

Search Result 170, Processing Time 0.033 seconds

Effect of Pepino Extract on Alcohol Metabolism in Rats (페피노 추출액이 흰쥐의 알코올 대사에 미치는 영향)

  • Choi, Ji-Eun;Kim, Ji-Young;Jeong, Bo-Young;Park, Geum-Duck;Lee, In-Sook;Jo, Nam-Ji;Jeong, Yoon-Hwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.10
    • /
    • pp.1342-1346
    • /
    • 2009
  • This study was conducted to investigate the effect of Pepino extract on alcohol metabolism in male Sprague-Dawley rats. When the rats were given Pepino extract 30 min before 60% alcohol (4 g/kg B.W) administration, alcohol concentration in blood was significantly reduced, but acetaldehyde concentration was not significantly different, compared with the control group after 3 hrs of alcohol administration. When the rats were given Pepino extract ($1^{\circ},\;5^{\circ},\;10^{\circ},\;&\;15^{\circ}$ Brix) 30 min before 60% alcohol administration, alcohol concentration in blood with $1^{\circ}$ Brix Pepino extract was 44% after 3 hrs of alcohol administration, compared with the control group. When the rats were given with $1^{\circ}$ Brix Pepino extract at 30 min before 60% alcohol administration, alcohol concentration in blood was significantly reduced after one hour and acetaldehyde concentration was reduced by 19% after 5 hrs of alcohol administration, compared with the control group. Glutamate-oxaloacetate transaminase and glutamate-pyruvate transaminase activities were not significantly different in all experimental groups, compared with the control group. These results suggest that Pepino extract can be effective in alcohol metabolism in the alcohol-treated rats.

A Study on Emissions and Catalytic Conversion Efficiency Characteristics of an Electronic Control Engine Using Ethanol Blended Gasoline as Fuels

  • Cho Haeng-Muk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.722-728
    • /
    • 2005
  • In this paper, the effects of ethanol blended gasoline on emissions and their catalytic conversion efficiency characteristics were investigated in a multiple-point EFI gasoline engine, The results show that with the increase of ethanol concentration in the blended fuels, THC emissions were drastically reduced by up to thirty percent, And brake specific fuel consumption was increased, but brake specific energy consumption could be improved. However, unburned ethanol and acetaldehyde emissions increased. Pt/Rh based three-way catalysts were effective to reduce acetaldehyde emissions, but had low catalytic conversion efficiency for unburned ethanol. The effect of ethanol on CO and NOx emissions and their catalytic conversion efficiency had close relation to the engine's speed, load and air/fuel ratio. Furthermore fuels blended with thirty percent ethanol by volume could dramatically reduced THC CO and NOx emissions at idle speed.

Isolation and Identification of Aldehyde Producing Methanol Utilizing Yeast (메탄올 자화성 효모의 분리, 동정 및 Aldehyde 생산)

  • 윤병대;김희식;권태종;양지원;권기석;이현선;안종석;민태익
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.6
    • /
    • pp.630-636
    • /
    • 1992
  • Hansenula nonfermentans KYP-l was selected and identified from 19 methanol utilizing yeasts isolated from soil samples by the enrichment culture technique. This strain showed a high cell concentration and a high aldehyde production. Aldehyde production was carried out in a resting cell system using methanol utilizing yeast as a biocatalyst. The molar yield of acetaldehyde was the highest among the aldehyde investigated, and the maximum amount of aldehyde was produced by cells obtained from a 40 hours' culture.

  • PDF

A case of Hypothermia Resulting from Disulfiram-Ethanol Reaction (다이설피람-에탄올 반응에 의한 저체온증 1례)

  • Bae, Hyun-A;Eo, Eun-Kyung
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.2 no.1
    • /
    • pp.54-57
    • /
    • 2004
  • Disulfiram (tetraethylthiuram disulphid) is used in the treatment of chronic alcoholism since it causes an unpleasant aversive reaction to alcohol. It works by inactivating hepatic aldehyde dehydrogenase, leading to pronounced rise in the acetaldehyde concentration when ethanol is metabolized. Acetaldehyde causes alcohol sensitivity, which involve vasodilation associated with feeling of hotness and facial flushing, increased heart rate and respiration rates, lowered blood pressure, nausea, headache. One of its metabolites, diethyldithiocarbamate (DDC) can inhibit the enzyme dopamine $\beta$-hydroxylase (DBH), this may account for the profound refractory hypotension and hypothermia seen with the disulfiram-ethanol reaction (DER), resulting from norepinephrine depletion. This report is presents the case of a patient we met, who presented with hypothermia caused by the disulfiram-ethanol reaction, and along with a brief review of the subject.

  • PDF

Effect of Impregnation and Modification on Activated Carbon for Acetaldehyde Adsorption (아세트알데하이드 흡착을 위한 활성탄의 첨착 및 개질 효과)

  • Jin Chan Park;Dong Min Kim;Jong Dae Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.472-478
    • /
    • 2023
  • In this study, the acetaldehyde removal characteristics of activated carbon (AC) for air purifier filters were investigated using metal catalysts-impregnation and functional group-modification method. The AC with a high specific surface area(1700 m2/g) and micropores was prepared by KOH activation of coconut charcoal and the efficiency of catalyst and functional group immobilization was examined by varying the drying conditions within the pores after immersion. The physical properties of the prepared activated carbon were analyzed by BET, ICP, EA, and FT-IR, and the acetaldehyde adsorption performances were investigated using gas chromatography (GC) at various impregnation and modified conditions. As the concentration of impregnation solution increased, the amount of impregnated metal catalysts increased, while the specific surface area showed a decreasing trend. The adsorption tests of the metal catalyst-impregnated and functional group-modified activated carbons revealed that excellent adsorption performance in compositions MgO10@AC, CaO10@AC, EU10@AC, and H-U3N1@AC, respectively. The MgO10@AC, which showed the highest adsorption performance, had a breakthrough time of 533.8 minutes and adsorption capacity of 57.4 mg/g for acetaldehyde adsorption. It was found that the nano-sized MgO catalyst on the activated carbon improved the adsorption performance by interacting with carbonyl groups of acetaldehyde.

Monitoring of Alcohol Fermentation Condition for 'Cheongdobansi' Astringent Persimmon (Diospyros kaki T.) (떫은감 '청도반시'의 알코올 발효조건 모니터링)

  • Lee Su-Won;Lee Oh-Seuk;Jang Se-Young;Jeong Yong-Jin;Kwon Joong-Ho
    • Food Science and Preservation
    • /
    • v.13 no.4
    • /
    • pp.490-494
    • /
    • 2006
  • Alcohol fermentation conditions were investigated using 'Cheondobansi' astringent persimmon (Diospyros kaki T.) for the study of persimmon wine and distilled liquor, The optimal yeast strain for 'Cheongdobansi' astringent persimmon alcohol fermentation was Saccharomyces kluyveri DJ97, which showed 10.8% of alcohol concentration, 96.25% of alcohol yield, and 935 ppm of methanol. The initial conditions of $22^{\circ}Brix$ and 120%(v/w) water addition resulted in the highest alcohol concentration of 10.7%. The alcohol concentration was higher in pectinase non-treated samples than in pectinase-teated samples. Lower concentrations of acetaldehyde and n-propanol were measured for the pectinase-treated sample than for the non-treatment samples. However, the methanol concentration of the pectinase-teated sample was higher than that of the pectinase non-treatment sample.

Odor Characteristics and Concentration of Malodorous Volatile Organic Compounds Emitted from a Sewer and Its Outlet (하수관거 및 토구에서 발생하는 휘발성 유기화합물 악취 특성)

  • Park, Sang Jin;Kwon, Soo Youl
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.6
    • /
    • pp.457-466
    • /
    • 2017
  • Objectives: This study was carried out to investigate the characteristics of volatile organic compounds (VOCs) emitted from sewerage facilities such as a sanitary sewers, outlets, and catch basins. In addition, the dominant malodorous VOCs among the compounds in this study were studied. Methods: Waste gas samples were collected at 27 points in a sanitary sewer in commercial and residental areas. The concentrations of seven volatile organic compounds, including benzene and toluene, in the samples were analyzed by gas chromatograph mass spectrophotometer (GC/MS). Odor concentrations were estimated using the concentration data of the VOCs and each compound's threshold limit value. Results: As a result, it appeared that the average concentration of total observed data for acetaldehyde was 15.98 ppb and benzene 1.87 ppb, toluene 82.31 ppb, ethyl benzene 63.12 ppb, m+p-xylene 15.66 ppb, oxylene 18.73 ppb, and styrene 4.39 ppb. VOC concentrations in the commercial area were higher than those in the residential area. VOC concentrations of waste gas emitted from sewer lines was also higher than those at the outlet and in the catch basins. It was estimated that the main malodorous VOC among the seven VOCs was acetaldehyde. Conclusions: As there is little data on VOC concentrations inside sewer facilities in Korea, these data will be helpful for estimating impact assessment of VOCs and establishing a counter-plan for the abatement of VOCs from sewer facilities in the future.

Effects of Pectinase Treatment on Alcohol Fermentation of Persimmon (Pectinase처리가 감과실 알콜발효에 미치는 영향)

  • Jeong, Yong-Jin;Kim, Hyuk-Il;Whang, Key;Lee, Oh-Seuk;Park, Nan-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.4
    • /
    • pp.578-582
    • /
    • 2002
  • This study was conducted to determine whether pectinase treatment would affect the process of alcohol fer-mentation with persimmon. The pectinase did not change pH and total acidity throughout the alcohol fermentation. However, the concentrations of reducing sugar were significantly lowered with the fermentation time, compared with controls. During the alcohol fermertation, the concentration of reducing sugar decreased rapidly up to 60 hours, unchanged from 60 to 72 hours, and then increased thereafter. The total alcohol concentrations of pectinase-treated groups were significantly higher than that of alcohol fermentation containing without pectinase. Among concentration 200 and 500 ppm had the most pronounced increase in the yield (%) of total alcohol (96%, respectively) and then, 300, 400 ppm and control in descending order. The contents of 5 major alcohols (acetaldehyde, methanol, n-propy alcohol, iso-butyl alcohol and iso-amyl alcohol) were measured. Among alcohol constituents, acetaldehyde and methanol were detected to be the lowest at control and methanol the highest at 200 ppm. These observations indicated that pectinase treatment would increase the yield of total alcohol, whereas it also raised methanol production during persimmon alcohol fermentation.

Protective Effects of Branched-chain Amino Acid (BCAA)-enriched Corn Gluten Hydrolysates on Ethanol-induced Hepatic Injury in Rats (알코올성 간 손상을 유발한 흰쥐에 대한 고 분지아미노산 함유 옥수수 단백가수물의 간 기능 보호효과)

  • Chung, Yong-Il;Bae, In-Young;Lee, Ji-Yeon;Chun, Hyang-Sook;Lee, Hyeon-Gyu
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.706-711
    • /
    • 2009
  • Hepatoprotective effects of corn gluten hydrolysates (CGH) were investigated in rats orally treated with ethanol (30%(v/v), 3 g/kg body weight/day) for 4 weeks. Six-week old Sprague-Dawley male rats were divided into four dietary groups: normal diet (N), alcohol diet (E), E+CGH 1% diet (CGH-1%), and E+CGH 3% diet (CGH-3%). Body weights and liver indices were not significantly different among the four groups. However, food intakes were lower in the CGH groups than in the normal group (p<0.05). The administration of CGH significantly reduced serum alkaline phosphatase activity by 30% compared to the alcohol diet group. Among the antioxidative enzymes assessed, catalase activity was significantly decreased by 79% in the CGH diet groups compared to the alcohol diet group. In comparison to the alcohol-treated group, aldehyde dehydrogenase activity was increased by 20%, while microsomal ethanol oxidizing system activity was decreased by 20% in the CGH-treated groups. Furthermore, the area under the curve of the blood acetaldehyde concentration versus time profile after the administration of ethanol was significantly lower for the CGH rats than for the ethanol or asparaginic acid treated groups. Thus, CGH seems to offer beneficial effects by protecting against ethanol-induced hepatotoxicity by improving the acetaldehyde-related metabolizing system.

Comparison of recovery rates of DNPH-Cartridge sampler in the analysis of odorous carbonyl compounds (DNPH Cartridge를 이용한 악취성 카르보닐화합물의 분석회수율 비교)

  • Hong, One-Feel;Lim, Sung-Min;Kim, Ki-Hyun
    • Analytical Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.446-456
    • /
    • 2010
  • In this study, the performance characteristics of DNPH sampling were investigated in the collection and analysis of 5 carbonyl compounds (CC) in air using the cartridge products produced by three different makers. For these experiments, gaseous standards of 5 CCs were prepared to cover 9 concentration levels for each compound (33~2600 nmol). Some cartridge products exhibited relatively high blank values of acetaldehyde (AA) and propionaldehyde (PA). The recovery rates of all three cartridges showed moderate reduction as the molecular weight of CC increased. In addition, when the recovery rate was compared by percent error (%), the most stable patterns were achieved in the intermediate concentration range of 263~1312 nmol (in case of AA). The overall results of our study suggest that the optimal range of recovery for a given concentration range should be considered to obtain the most reliable data for the DNPH cartridge method.