• Title/Summary/Keyword: accelerated factor

Search Result 441, Processing Time 0.029 seconds

An Accelerated Life Test for Burnout of Tungsten Filament of Incandescent Lamp (텅스텐 백열전구의 필라멘트 단선에 대한 가속수명시험)

  • Kim Jin-Woo;Shin Jae-Chul;Kim Myung-Soo;Lee Jae-Kook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.921-929
    • /
    • 2005
  • This paper presents an accelerated life test for burnout of tungsten filament of incandescent lamp. From failure analyses of field samples, it is shown that their root causes are local heating or hot spots in the filament caused by tungsten evaporation and wire sag. Finite element analysis is performed to evaluate the effect of vibration and impact for burnout, but any points of stress concentration or structural weakness are not found in the sample. To estimate the burnout life of lamp, an accelerated life test is planned by using quality function deployment and fractional factorial design, where voltage, vibration, and temperature are selected as accelerating variables. We assumed that Weibull lifetime distribution and a generalized linear model of life-stress relationship hold through goodness of fit test and test for common shape parameter of the distribution. Using accelerated life testing software, we estimated the common shape parameter of Weibull distribution, life-stress relationship, and accelerating factor.

Acceleration Life Prediction of the Capacitor on a Traction Inverter for a High-Speed Train (고속철도차량용 견인 인버터 커패시터의 가속수명 예측)

  • Maeng, Heeyoung;Jung, Si-Kyo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.653-659
    • /
    • 2015
  • The aim of this study is to develop a technique for the accelerated life test of the capacitor in a propulsion control device of a traction inverter used for a high-speed train. Using this technique, the accelerated life test can possibly estimate the life cycle of a capacitor under various temperature conditions and irregularly applied voltage. The accelerated life test is conducted for the capacitor of the traction inverter. The common proceedings of this test are selection of failure mechanism, determination of accelerated stress, range determination of the accelerated stress, determination of the test condition, and distribution and determination of the sample. From this result, the continuous applied voltage was not considered for the acceleration factors anymore. Therefore, the final result having an acceleration factor of 9.4 (= 13,626/1,445) was observed. Furthermore, the life-shortening acceleration effect for the irregular applied voltage condition can be applied to various situations.

Service life prediction of rubber seal materials for immersion tunnel by accelerated thermal degradation tests (가속 열 노화시험을 이용한 침매터널용 고무 씰 소재의 사용수명 예측)

  • Park, Joon-Hyung;Park, Kwang-Hwa;Park, Hyeong-Geun;Kwon, Young-Il;Kim, Jong-Ho;Sung, Il-Kyung
    • Journal of Applied Reliability
    • /
    • v.9 no.4
    • /
    • pp.275-290
    • /
    • 2009
  • This paper considers accelerated thermal degradation tests which are performed for rubber seal materials used for undersea tunnels constructed by immersion method. Three types of rubber seals are tested; rubber expansion seal, omega seal, and shock absorber hose. Main ingredient of rubber expansion seal is EPDM(Ethylene Propylene Diene Monomer) and that of both omega seal and shock absorber hose is SBR(Styrene Butadiene Rubber). The accelerated stress is temperature and an Arrhenius model is introduced to describe the relationship between the lifetime and the stress. From the accelerated degradation tests, dominant failure mode of the rubber seals is found to be the loss of elongation. The lifetime distribution and the service life of the rubber seals at use condition are estimated from the test results. The acceleration factor for three types of rubber seals are also investigated.

  • PDF

Deadlock-free Routing of an ACV in Accelerated Motion (가감속을 고려한 교착없는 AGV 주행경로설정)

  • Choe, Ri;Park, Tae-Jin;Ryu, Kwang-Ryel
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.387-392
    • /
    • 2006
  • In the environment where AGVs(Automated Guided Vehicles) operate concurrently in limited space, collisions. deadlocks, and livelocks which have negative effect on the productivity of AGVs occure more frequently. The accelerated motion of an AGV is also the factor that make the AGV routing more difficult because the accelerated motion makes it difficult to estimate the vehicle's exact travel time. In this study, we propose methods of avoiding collisions, deadlocks, and livelocks using OAR(Occupancy Area Reservation) table, and selecting best route by estimating the travel time of an AGV in accelerated motion. A time-driven simulation validated the effectiveness of the proposed methods.

  • PDF

Investigation into the Worst Stress Condition for an Accelerated Life Test of a Compressor in Refrigerators - Acceleration Factor and the Reducible Test Time under High Temperature - (냉장고용 압축기의 가속수명시험을 위한 가혹조건 탐색 - 고온 가혹조건에서의 가속계수와 단축 시험기간 -)

  • Jung, Y.M.;Joo, W.J.;Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.16 no.3
    • /
    • pp.44-50
    • /
    • 2012
  • The reliability qualification test is essential in order to ensure the life time of the product under the normal operation conditions when a new product is developed. The reliability qualification test period has an important impact on the development time of new product. Therefore, some researches to reduce the test time of reliability qualification test have been actively studied. Generally, accelerated life test is well known as one method that can save the test time of the reliability qualification test. This test is conducted under the higher stress condition than normal condition. So we need to investigate what factor affects to the higher stress condition. This paper shows the relationship between the acceleration factor and reliability qualification test period. Especially, we focused on the method to obtain effective acceleration factors under the high temperature condition. Through some experiments for a refrigerator's compressor, we were able to confirm how to increase acceleration factors and how to reduce the reliability qualification test period with minimum samples.

Lifetime estimation for current sensor by accelerated life test (가속수명시험을 통한 전류센서의 수명 예측)

  • Kim, Je-Min;Choi, Sung-Soon;Ma, Byung-Jin;Lee, Kwan-Hun;Song, Byeong-Suk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.257-258
    • /
    • 2008
  • Hall-type current sensors have been widely used in many fields such as elevator and train system. To estimate lifetime of hall-type current sensors, an accelerated life test with real-time monitoring system simultaneously was designed and performed in high temperature environment with three different temperatures. From the experimental results, activation energy was about 0.9 eV, and acceleration factor was about 450 based on Arrhenius model. As a results, $B_{10}$ lifetime of hall-type current sensor is estimated to be 65,460 hours.

  • PDF

A Study on Track Drive Unit Test and Evaluation for Mini Excavators (소형 굴삭기의 주행구동유니트 시험평가에 관한 연구)

  • Lee, Gi-Chun;Lee, Young-Bum;Choi, Byung Oh
    • Journal of Applied Reliability
    • /
    • v.15 no.3
    • /
    • pp.139-144
    • /
    • 2015
  • Track drive unit adopted in the small sized excavator generally have been used in the construction equipment under the 10 tons as the driving device with forwarding and reversing of excavator. It is required to study the accelerated life test applied by over torque and speed to test the durability life test reflected the many driving modes of small sized excavator and also need to equip the comprehensive performance and life test equipments to do the various performance tests. This study had analyzed the failure modes of the components, and calculated the equivalent loads investigated the used loads in the real field conditions and elicits the acceleration factor adopted in the inverse power model. Also, this study have considered the changes of the acceleration factor and the durability test time in the case of the rotary group and the bearing through analyzing the main failure modes. It was calculated the no failure test time about 2 samples and confidence level 90% and elicited the accelerated life time 720 hours.

Accelerated Tensile Creep Test Method of Geosynthetics for Soil Reinforcement (보강용 지오신세틱스의 가속 인장 크리프 시험방법)

  • Koo, Hyun-Jin;Cho, Hang-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.196-203
    • /
    • 2008
  • Durability of geosynthetics for soil reinforcement is accounted for creep and creep rupture, installation damage and weathering, chemical and biological degradation. Among these, the long-term creep properties have been considered as the most important factors which are directly related to the failure of geosynthetic-reinforced soil(GRS). However, the creep test methods and strain limits are too various to compare the test results with each other. The most widely used test methods are conventional creep test, time-temperature superposition and stepped isothermal method as accelerated creep tests. Recently developed design guidelines recommend that creep-rupture curve be used to determine the creep reduction factor($RF_{CR}$) which is a conservative approach. In this study, the different creep test methods were compared and the creep reduction factors were estimated at different creep strain limits of 10% of total creep strain and creep rupture. In order to minimize the impact of creep strain to the GRS structures, the various creep reduction factors using different creep test methods should be investigated and then the most appropriated one should be selected for incorporating into the design.

  • PDF

Development of Accelerated Life Test Method for Constant Electrical Potential Electrolysis Gas Sensor (정전위 전해식 가스센서의 가속수명시험법 개발)

  • Yang, Il Young;Kang, Jun Gu;Yu, Sang Woo;Oh, Geun Tae;Na, Yoon Gyoon
    • Journal of Applied Reliability
    • /
    • v.16 no.3
    • /
    • pp.180-191
    • /
    • 2016
  • Purpose: The purpose of this study was to develop the accelerated life test method for Constant Electrical Potential Electrolysis gas sensor (CEPE gas sensor). Methods: The parts and modules of CEPE gas sensor were analyzed by using Reliability Block Diagram (RBD). Failure Mode and Effect Analysis (FMEA) and Quality Function Deployment (QFD) methods were performed for each part to determine the most affecting stress factor in its life cycle. The long term testing was conducted at three different dry heat levels and the acceleration factor was developed by using Arrhenius relationship. Conclusion: The acceleration factor for CEPE gas sensor was developed by using FMEA, QFD, and statistical analysis for its failure data. Also qualification tests were designed to meet the target life.

Characteristics of Insulation Aging in Large Generator Stator Windings (대용량 발전기 고정자 권선의 절연열화 특성)

  • Kim, Hee-Dong;Lee, Young-Jun;Ju, Young-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1375-1379
    • /
    • 2009
  • Insulation tests have been performed on two generator stator bars under accelerated aging under a laboratory environment. Electrical stress was applied to stator bar No.1, and electrical and thermal stresses were applied to stator bar No.2. Nondestructive stator insulation tests including the ac current, dissipation factor($tan{\delta}$), and partial discharge tests have been performed on both bars as the bars were aged for 11460 hours. Experimental test results show that ${\Delta}I$, ${\Delta}tan{\delta}$, and partial discharge of No. 1 and No.2 stator bars increased with increased in aging time. It has been concluded from the test that the stator insulation of the two generators are in good condition.