• Title/Summary/Keyword: abutment-implant connection

Search Result 132, Processing Time 0.027 seconds

Study on the stress distribution depending on the bone type and implant abutment connection by finite element analysis (지대주 연결 형태와 골질에 따른 저작압이 임프란트 주위골내 응력분포에 미치는 영향)

  • Park, Hyun-Soo;Lim, Sung-Bin;Chung, Chin-Hyung;Hong, Ki-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.531-554
    • /
    • 2006
  • Oral implants must fulfill certain criteria arising from special demands of function, which include biocompatibility, adequate mechanical strength, optimum soft and hard tissue integration, and transmission of functional forces to bone within physiological limits. And one of the critical elements influencing the long-term uncompromise functioning of oral implants is load distribution at the implant- bone interface, Factors that affect the load transfer at the bone-implant interface include the type of loading, material properties of the implant and prosthesis, implant geometry, surface structure, quality and quantity of the surrounding bone, and nature of the bone-implant interface. To understand the biomechanical behavior of dental implants, validation of stress and strain measurements is required. The finite element analysis (FEA) has been applied to the dental implant field to predict stress distribution patterns in the implant-bone interface by comparison of various implant designs. This method offers the advantage of solving complex structural problems by dividing them into smaller and simpler interrelated sections by using mathematical techniques. The purpose of this study was to evaluate the stresses induced around the implants in bone using FEA, A 3D FEA computer software (SOLIDWORKS 2004, DASSO SYSTEM, France) was used for the analysis of clinical simulations. Two types (external and internal) of implants of 4.1 mm diameter, 12.0 mm length were buried in 4 types of bone modeled. Vertical and oblique forces of lOON were applied on the center of the abutment, and the values of von Mises equivalent stress at the implant-bone interface were computed. The results showed that von Mises stresses at the marginal. bone were higher under oblique load than under vertical load, and the stresses were higher at the lingual marginal bone than at the buccal marginal bone under oblique load. Under vertical and oblique load, the stress in type I, II, III bone was found to be the highest at the marginal bone and the lowest at the bone around apical portions of implant. Higher stresses occurred at the top of the crestal region and lower stresses occurred near the tip of the implant with greater thickness of the cortical shell while high stresses surrounded the fixture apex for type N. The stresses in the crestal region were higher in Model 2 than in Model 1, the stresses near the tip of the implant were higher in Model 1 than Model 2, and Model 2 showed more effective stress distribution than Model.

Influence of the implant-abutment connection design and diameter on the screw joint stability

  • Shin, Hyon-Mo;Huh, Jung-Bo;Yun, Mi-Jeong;Jeon, Young-Chan;Chang, Brian Myung;Jeong, Chang-Mo
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.2
    • /
    • pp.126-132
    • /
    • 2014
  • PURPOSE. This study was conducted to evaluate the influence of the implant-abutment connection design and diameter on the screw joint stability. MATERIALS AND METHODS. Regular and wide-diameter implant systems with three different joint connection designs: an external butt joint, a one-stage internal cone, and a two-stage internal cone were divided into seven groups (n=5, in each group). The initial removal torque values of the abutment screw were measured with a digital torque gauge. The postload removal torque values were measured after 100,000 cycles of a 150 N and a 10 Hz cyclic load had been applied. Subsequently, the rates of the initial and postload removal torque losses were calculated to evaluate the effect of the joint connection design and diameter on the screw joint stability. Each group was compared using Kruskal-Wallis test and Mann-Whitney U test as post-hoc test (${\alpha}$=0.05). RESULTS. The postload removal torque value was high in the following order with regard to magnitude: two-stage internal cone, one-stage internal cone, and external butt joint systems. In the regular-diameter group, the external butt joint and one-stage internal cone systems showed lower postload removal torque loss rates than the two-stage internal cone system. In the wide-diameter group, the external butt joint system showed a lower loss rate than the one-stage internal cone and two-stage internal cone systems. In the two-stage internal cone system, the wide-diameter group showed a significantly lower loss rate than the regular-diameter group (P<.05). CONCLUSION. The results of this study showed that the external butt joint was more advantageous than the internal cone in terms of the postload removal torque loss. For the difference in the implant diameter, a wide diameter was more advantageous in terms of the torque loss rate.

A Study of mechanical properties of oxide layer removed Co-Cr-Mo abutments

  • Ryu, Jae-ho;Huh, Jung-Bo;Ro, Jung-Hoon;Yun, Mi-Jung;Jeong, Chang-Mo
    • The Journal of the Korean dental association
    • /
    • v.53 no.11
    • /
    • pp.804-816
    • /
    • 2015
  • PURPOSE: The aim of this study was to evaluate the influence of the oxide layer removal process in the Co-Cr-Mo (CCM) abutment after casting procedure on the prosthesis settlement and screw stability. MATERIALS AND METHODS: CCM abutments of four different interface conditions (CCM-M; machined, CCM-O; oxide layer formed, CCM-B; blasted, CCM-P; polished after blasted) and gold abutment (Gold-C; Cast with type III Gold alloy) were used. The initial settling values of abutments were evaluated according to the difference of implant-abutment length when the tightening torques were applied at 5 Ncm and 30 Ncm, and the settling values of abutments caused by loading were evaluated according to the difference of implant-abutment length before and after loading with 250 N, 100000 cycle. The loss ratios of removal torque for abutment screws were evaluated according to the difference in value of removal torques under 30 Ncm tightening torque applied before and after cyclic loading. RESULTS: The CCM-P and CCM-B group showed a higher initial settling value compared with the Gold-C group (P<.05), while the Gold-C group showed the highest settling values caused by loading (P<.05) and no significant differences were observed for between CCM groups (P>.05). The loss ratio of removal torque values for the CCM-B, CCM-P groups did not differ significantly from that of the Gold-C group (P>.05). CONCLUSION: Even though the oxide layer was removed by different methods, CCM abutment with internal conical connection structure showed lower abutment settling and similar screw loosening after cyclic loading compared with gold abutment.

A 3-dimensional finite element analysis of tapered internal connection implant system (Avana SS $III^{(R)}$) on different abutment connections (경사형 내부연결 임플란트 시스템 (SS $III^{(R)}$)에서 지대주 형태에 따른 응력분포의 3차원 유한요소 분석)

  • Lee, Hye-Sung;Kim, Myung-Rae;Park, Ji-Man;Kim, Sun-Jong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.3
    • /
    • pp.181-188
    • /
    • 2010
  • Purpose: The purpose of this study was to compare the stress distribution characteristics of four different abutment connections on SS-$III^{(R)}$ fixture under occlusal loading, using 3-dimensional finite element method. Materials and methods: The fixture of SS-$III^{(R)}$ (Osstem, Korea) with 4 mm diameter and 11.5 mm length and 4 types of abutments were analyzed; Solid, Com-Octa, ComOcta Gold, and Octa abutment. The models were placed in the area of first molar in the mandible. The 4 loading conditions were; (1) the vertical loading of 100 N on the central fossa, (2) the vertical loading of 100 N on the buccal cusp, (3) the $30^{\circ}$ inclined loading of 100 N to lingual side on the central fossa, and (4) the $30^{\circ}$ inclined loading of 100 N to the lingual side on the buccal cusp. The 3G.Author program was used, the von-Mises stress was calculated and the stress contours were plotted on each part of the implant systems and the surrounding bone structures. Results: Regardless of abutment types and loading conditions, higher stress concentration was observed at the cortical bone. In cancellous bone, the highest stress was observed at apical portion and the maximum stress occurred at the implant neck. The higher internal stress was observed in the fixtures than in the bone. The lowest stress was observed at loading condition 1 and the stress concentration was also lower than any other loading conditions. Conclusion: Within the limitation of the result of this study, it seems that the abutment connection type does not affect much on the stress distribution of bone structure.

A STUDY ON THE VARIOUS IMPLANT SYSTEMS USING THE FINITE ELEMENT STRESS ANALYSIS (수종의 임플랜트 시스템에 따른 유한요소법적 응력분석에 관한 연구)

  • Yu Seong-Hyun;Park Won-Hee;Park Ju-Jin;Lee Young-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.207-216
    • /
    • 2006
  • Statement of Problem: To conduct a successful function of implant prosthesis in oral cavity for a long time, it is important that not only structure materials must have the biocompatibility, but also the prosthesis must be designed for the stress, which is occurred in occlusion, to scatter adequately within the limitation of alveolar bone around implant and bio-capacity of load support. Now implant which is used in clinical part has a very various shapes, recently the fixture that has tapered form of internal connection is often selected. However the stress analysis of fixtures still requires more studies. Purpose: The purpose of this study is to stress analysis of the implant prosthesis according to the different implant systems using finite element method. Material and methods: This study we make the finite element models that three type implant fixture ; $Br{\aa}nemark$, Camlog, Frialit-2 were placed in the area of mandibular first premolar and prosthesis fabricated, which we compared with stress distribution using the finite element analysis under two loading condition. Conclusion: The conclusions were as follows: 1. In all implant system, oblique loading of maximum Von mises stress of implant, alveolar bone and crown is higher than vertical loading of those. 2. Regardless of loading conditions and the type of system. cortical bone which contacts with implant fixture top area has high stress, and cancellous bone has a little stress. 3. Under the vertical loading, maximum Von mises stress of $Br{\aa}nemark$ system with external connection type and tapered form is lower than Camlog and Frialit-2 system with internal connection type and tapered form, but under oblique loading Camlog and Frialit-2 system is lower than $Br{\aa}nemark$ system.

THE INFLUENCE OF ABUTMENT SCREW TIGHTENING TIMING AND DLC COATING OF CONICAL CONNECTION IMPLANT SYSTEM (일체형 지대주의 Diamond Like Carbon 표면 처리와 나사 조임 시기가 풀림 현상에 미치는 영향)

  • Kim, Ki-Hong;Koak, Jai-Young;Heo, Seong-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.2
    • /
    • pp.209-216
    • /
    • 2008
  • Statement of problem: It is difficult about assessing the loosening tendency of conical connection type implant after cyclic loading with diamond like carbon coating one-piece abutments, and also about the retightening effect. Purpose: This study was performed to investigate the influence of one-piece abutment screw retightening after $5.0{\times}10^{4}$ cyclic loading and Diamond like coating Material and methods: Thirty two ITI implant were divided to 4 groups. Group 1,3-titanium abutment, group 2,4 - diamond like carbon coated abutment. Group 1,2 - $20.0{\times}10^{4}$ cyclic loading after $5.0{\times}10^{4}$ cyclic loading, Group 3,4- after $20.0{\times}10^{4}$ Cyclic loading. After cyclic loading, periotest values were taken and removal torque values of abutments were measured with a digital torque gauge. Results: 1. The removal torque of group 2 after $5.0{\times}10^{4}$ cyclic loading is slightly greater than the other groups but not significantly higher than others (P>0.05). 2. The final removal torque values after $20.0{\times}10^{4}$ cyclic loading of group 1 is bigger than group 3, and group 2 is bigger than group 4, but not significantly higher (P>0.05). 3. The final removal torque values after $20.0{\times}10^{4}$ cyclic loading of all groups are not significantly different (P>0.05).

A STUDY ON SURFACE OF VARIOUS ABUTMENT SCREWS

  • Park Chan-Ik;Chung Chae-Heon;Choi Han-Cheol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.351-359
    • /
    • 2003
  • Statement of problem: Regardless of any restoration, most of case, we used in screw connection between abutment and implant. For this reason, implant screw loosening has been remained problem in restorative practices. Purpose: The purpose of this study was to compare surface of coated/plated screw with titanium and gold alloy screw and to evaluate physical property of coated/plated material after scratch test in FESEM investigation Material and methods: GoldTite, titanium screw provided by 3i (Implant Innovation, USA) and TorqTite, titanium screw by Steri-Oss (Nobel Biocare, USA) and gold screw, titanium screw by AVANA (Osstem Implant, korea) - were selected for this study. Each abutment screw surface was observed at 100 times, and then screw crest, root, and slope were done more detailed numerical value, at 1000 times with FESEM. A micro-diamond needle was also prepared for the scratch test. Each abutment screw was fixed, micro-diamond scratch the surface of head region was made at constant load and then was observed central region and periphery of fine trace through 1000 times with FESEM. Results: The surface of GoldTite was smoother than that of other kinds of screw and had abundant ductility and malleability compared with titanium and gold screw. The scratch test also showed that teflon particles were exfoliated easily in screw coated with teflon. Titanium screw had a rough surface and low ductility. Conclusion: It was recommended that the clinical use of gold-plated screw would prevent a screw from loosening. CLINICAL IMPLICATIONS Clinical use of gold-plated screw would prevent a screw from loosening because it had abundant ductility and malleability compared with titanium and gold screw.

Clinical accuracy of impression technique using digital superimposition of customized abutment with subgingival margin: A case report (치은연하 변연을 가지는 맞춤형 지대주에서 디지털 중첩기술을 이용한 인상채득술의 임상 적용 증례)

  • Kim, Jin-Wan;Jeong, Chang-Mo;Yun, Mi-Jung;Lee, So-Hyoun;Lee, Hyeonjong;Huh, Jung-Bo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.2
    • /
    • pp.169-175
    • /
    • 2020
  • Traditionally, gingival retraction has been performed to obtain customized abutment impressions with subgingival margins of the implant supported prosthesis. However, gingival retraction may have side effects such as gingival recession and bleed, leading to an inaccurate impression. In order to prevent these problems, in this case, the new technique has been introduced; a customized abutment which is designed for superimposition is used. Before the connection of the abutment to the implant fixture, pre-scanned shape data are stored, and then the optical impression without gingival retraction is obtained after connecting to the fixture. The suprastructure is fabricated by superimposing the two data. This technique showed the clinical efficacy of fabricating the implant supported prosthesis with subgingival margin, which satisfied the aesthetics, convenience, and clinically acceptable marginal and internal fit.

Influence of Tightening Torque on Implant-Abutment Screw Joint Stability (조임회전력이 임플랜트-지대주 나사 연결부의 안정성에 미치는 영향)

  • Shin, Hyon-Mo;Jeong, Chang-Mo;Jeon, Yonung-Chan;Yun, Mi-Jeong;Yoon, Ji-Hoon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.4
    • /
    • pp.396-408
    • /
    • 2008
  • Statement of problem: Within the elastic limit of the screw, the greater the preload, the tighter and more secure the screw joint. However, additional tensile forces can incur plastic deformation of the abutment screw when functional loads are superimposed on preload stresses, and they can elicit the loosening or fracture of the abutment screw. Therefore, it is necessary to find the optimum preload that will maximize fatigue life and simultaneously offer a reasonable degree of protection against loosening. Another critical factor in addition to the applied torque which can affect the amount of preload is the joint connection type between implant and abutment. Purpose: The purpose of this study was to evaluate the influence of tightening torque on the implant-abutment screw joint stability. Material and methods: Respectively, three different amount of tightening torque (20, 30, and 40 Ncm) were applied to implant systems with three different joint connections, one external butt joint and two internal cones. The initial removal torque value and the postload (cyclic loading up to 100,000 cycles) removal torque value of the abutment screw were measured with digital torque gauge. Then rate of the initial and the postload removal torque loss were calculated for the comparison of the effect of tightening torques and joint connection types between implant and abutment on the joint stability. Results and conclusion: 1. Increase in tightening torque value resulted in significant increase in initial and postload removal torque value in all implant systems (P < .05). 2. Initial removal torque loss rates in SS II system were not significantly different when three different tightening torque values were applied (P > .05), however GS II and US II systems exhibited significantly lower loss rates with 40 Ncm torque value than with 20 Ncm (P < .05). 3. In all implant systems, postload removal torque loss rates were lowest when the torque value of 30 Ncm was applied (P < .05). 4. Postload removal torque loss rates tended to increase in order of SS II, GS II and US II system. 5. There was no correlation between initial removal torque value and postload removal torque loss rate (P > .05).

THE ASSESSMENT OF ABUTMENT SCREW STABILITY BETWEEN THE EXTERNAL AND INTERNAL HEXAGONAL JOINT UNDER CYCLIC LOADING

  • Lee, Tae-Sik;Han, Jung-Suk;Yang, Jae-Ho;Lee, Jae-Bong;Kim, Sung-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.6
    • /
    • pp.561-568
    • /
    • 2008
  • STATEMENT OF PROBLEM: Currently, many implant systems are developed and divided into two types according to their joint connection: external or internal connection. Regardless of the connection type, screw loosening is the biggest problem in implant-supported restoration. PURPOSE: The purpose of this study is to assess the difference in stability of abutment screws between the external and internal hexagonal connection types under cyclic loading. MATERIAL AND METHODS: Each of the 15 samples of external implants and internal abutments were tightened to 30 N/cm with a digital torque gauge, and cemented with a hemispherical metal cap. Each unit was then mounted in a $30^{\circ}$ inclined jig. Then each group was divided into 2 sub-groups based on different periods of cyclic loading with the loading machine (30 N/ cm - 300 N/cm,14 Hz: first group $1{\times}10^6$, $5{\times}10^6$ cyclic loading; second group $3{\times}10^6$, $3{\times}10^6$ for a total cyclic loading of $6{\times}10^6$) The removal torque value of the screw before and after cyclic loading was checked. SPSS statistical software for Windows was used for statistical analysis. Group means were calculated and compared by ANOVA, independent t-test, and paired t-test with ${\alpha}$=0.05. RESULTS: In the external hexagonal connection, the difference between the removal torque value of the abutment screw before loading, the value after $1{\tims}10^6$ cyclic loading, and the value after $1{\times}10^6$, and additional $5{\times}10^6$ cyclic loading was not significant. The difference between the removal torque value after $3{\times}10^6$ cyclic loading and after $3{\times}10^6$, and additional $3{\times}10^6$ cyclic loading was not significant. In the internal hexagonal connection, the difference between the removal torque value before loading and the value after $1{\times}10^6$ cyclic loading was not significant, but the value after $1{\times}10^6$, and additional $5{\times}10^6$ cyclic loading was reduced and the difference was significant (P < .05). In addition, in the internal hexagonal connection, the difference between the removal torque value after $3{\times}10^6$ cyclic loading and the value after $3{\times}10^6$, and additional $3{\times}10^6$ cyclic loading was not significant. CONCLUSION: The external hexagonal connection was more stable than the internal hexagonal connection after $1{\times}10^6$, and additional $5{\times}10^6$ cyclic loading (t = 10.834, P < .001). There was no significant difference between the two systems after $3{\times}10^6$, and additional $3{\times}10^6$ cycles.