• Title/Summary/Keyword: absolute interferometer

Search Result 28, Processing Time 0.062 seconds

Absolute phase identification algorithm in a white light interferometer using a cross-correlation of fringe scans (백색광 간섭기에서 간섭 무늬의 상호 상관관계 함수를 이용한 절대 위상 측정 알고리즘)

  • Kim, Jeong-Gon
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.316-326
    • /
    • 2000
  • A new signal processing algorithm for white light interferometry has been proposed and investigated theoretically. The goal of the algorithm is to determine the absolute optical path length of an interferometer with very high precision (<< one optical wavelength). The algorithm features cross-correlation of interferometer fringe scans and hypothesis testing. The hypothesis test looks for a zero order fringe peak candidate about which the cross-correlation is symmetric minimizing the uncertainty of misidentification. The shot noise limited performance of the proposed signal processing algorithm has been analyzed using computer simulations. Simulation results were extrapolated to predict the misidentification rate at Signal to-Shot noise ratio (SNR) higher than 31 dB. Root-mean-square phase error between the computer-generated zero order fringe peak and the estimated zero order fringe peak has been calculated for the changes of three different parameters (SNR, fringe scan sampling rate, coherence length of light source). Results of computer simulations showed the ability of the proposed signal processing algorithm to identify the zero order fringe peak correctly. The proposed signal processing algorithm uses a software approach, which is potentially inexpensive, simple and fast.

  • PDF

Multiple-Point-Diffraction Interferometer : Error Analysis and Calibration (거친 표면 형상측정을 위한 점광원 절대간섭계의 오차해석과 시스템 변수의 보)

  • Kim, Byoung-Chang;Kim, Seung-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.361-365
    • /
    • 2005
  • An absolute interferometer system with multiple point-sources is devised for tile 3-D measurement of rough surface profiles. The positions of the point sources are determined to be the system parameters that influence the measurement accuracy, so they are calibrated precisely prior to performing actual measurements. For the calibration, a CCD camera composed of a two-dimensional array of photo-detectors was used. Performing optimization of the cost function constructed with phase values measured at each pixel on the CCD camera, the position coordinates of each point source is precisely determined. Measurement results after calibration performed for the warpage inspection of chip scale packages (CSPs) demonstrate that the maximum discrepancy is 9.8 mm with a standard deviation o( 1.5 mm in comparison with the test results obtained by using a Form Taly Surf instrument.

Absolute position measurement by lateral shearing interferometry of point-diffracted spherical waves (점회절 구면파의 전단 간섭계를 이용한 절대위치 측정)

  • Chu J.;Kim S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.25-26
    • /
    • 2006
  • The method measuring the absolute position of a point diffraction source emitting a spherical wavefront in three-dimension is proposed. Two-dimensional interference of spherical wavefronts is used to overcome ambiguity of phase order. The spherical wavefront is explicated by Taylor series expansion, from which a radius of curvature of a spherical wavefront and its center position in three-dimension are obtainable. The spherical wavefront is reconstructed by a modified lateral shearing interferometer, which uses single-mode fiber as a point diffraction source.

  • PDF

Absolute Test for a 4-inch Flat and Its Measurement Uncertainty (4인치 평면의 절대 측정 및 측정불확도 계산)

  • Kim, Su-Young;Song, Jae-Bong;Yang, Ho-Soon;Rhee, Hyug-Gyo
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.6
    • /
    • pp.339-345
    • /
    • 2017
  • The flatness of a reference flat plays an important role, from the calibration of an interferometer to the reference for a semiconductor or flat-panel display, etc. Especially if we order the flatness measurement outside Korea, we may spend more time and money. In this paper, we measured the flatness of a reference flat using a three-flat test, which is one of the absolute measurement methods, and calculated its measurement uncertainty. In the three-flat test we adopted, each flat is tested against another flat, with three unknown flats, using an interferometer. Among several three-flat tests, we adopted Griesmann's method which has a low measurement uncertainty and is less dependent on the experimental equipment. As a result, the measurement uncertainty was found to be less than 0.5 nm rms, which is very accurate for high-tech industrial applications.

Detection of White Light Interference Peak Position utilizing Analog Signal Processing (아날로그 신호처리를 이용한 백색광 간섭 피크의 검출)

  • Yeh, Yun-Hae;Lee, Jong-Kwon
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.319-325
    • /
    • 2005
  • A signal processing method for white light interferometry (WLI), which performs a series of analog signal processing steps to locate the central interference fringe position at high speed: is developed and applied to a WLI temperature sensor system. We found that the new method has random walk of $0.019^{\circ}C/\sqrt{Hz}$ with good linearity. However, the temperature change in the path-matching interferometer results in drift of the measured sensor output. The temperature dependence of drift in the WLI temperature sensor system, was calculated to be $1.42{\mu}m/^{\circ}C$. It is also found that the relationship between the peak spacing in the interferogram and the spacing measured by the method can be nonlinear when the fringe spacing is comparable to the coherence length of the source.

An Algorithm for Discontinuous Surface Profile Measurement using Wavelength Scanning Interferometer (파장 주사 간섭계를 이용한 불연속면의 표면 형상 측정 알고리즘)

  • 우현구;강철무;조형석
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.7
    • /
    • pp.507-514
    • /
    • 2003
  • Inspection and shape measurement of three-dimensional objects are widely needed in industries for quality monitoring and control. Recently the shape measurement using interferometric principle is found to be a successful methodology among other visual or optical technologies. Especially, the measuring method using wavelength scanning interferometer(WSI) has a great advantage in comparison with other conventional jnterferometric methods in that the absolute distance from the reference surface can be directly obtained from the amount of jnterferometric phase change. However, the measurement methods using WSI proposed by other researchers have low measurement resolution so far because they can't measure fractional phase change. To avoid this shortcoming we propose a new algorithm in this paper, which can obtain a small amount of even fractional phase change by sinusoidal function fitting. To evaluate the effectiveness of the proposed sinusoidal function fitting algorithm, a series of measuring experiments are conducted for discontinuously shaped specimens which have various height. The proposed algorithm shows much more enhanced measurement resolution than other existing conventional algorithms such as zero crossing algorithm and Fourier transform algorithm.

Measurement of Spatial Coherence Function of laser beam by using a Sagnac Interferometer (샤냑간섭계를 이용한 레이져빔의 Spatial Coherence Function 측정)

  • Lee, Chang-Hyouck;Kang, Yoon-Shik;Sung, Yu-Gene;Noh, Jae-Woo
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2007.07a
    • /
    • pp.111-112
    • /
    • 2007
  • The spatial coherence function of laser beam was measured by using a Sagnac interferometer and self referencing technique. For laser beam passing through a narrow slit, absolute value of measured spatial coherence function becomes more symmetric as the slit size is reduced. For diverging beams, the spatial coherence function shows fast oscillations in its real and imaginary parts. We explain this by using a Gaussian Schell-model. One can use this measurement method to study and characterize the property of light field coming out of small sample.

  • PDF

Measurement of Spatial Coherence Function of Laser Beam by using a Sagnac Interferometer

  • Lee, Chang-Hyouck;Kang, Yoon-Shik;Sung, Yu-Gene;Noh, Jae-Woo
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.71-75
    • /
    • 2007
  • The spatial coherence function of a laser beam was measured by using a Sagnac interferometer and self referencing technique. For a laser beam passing through a narrow slit, the absolute value of the measured spatial coherence function becomes more symmetric as the slit size is reduced. For diverging beams, the spatial coherence function shows fast oscillations in its real and imaginary parts. We explain this by using a Gaussian Schell-model. One can use this measurement method to study and characterize the property of the light field coming out of a small sample.