• Title/Summary/Keyword: abrasion resistance

Search Result 472, Processing Time 0.027 seconds

Surface Properties of Re-Ir Coating Thin Film on Tungsten Carbide Surface (Tungsten Carbide 표면에 코팅된 Re-Ir 박막의 표면 특성)

  • Lee, Ho-Shik;Cheon, Min-Woo;Park, Yong-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.3
    • /
    • pp.219-223
    • /
    • 2011
  • Rhenium-Iridium(Re-Ir) thin films were deposited onto the tungsten carbide(WC) molding core by sputtering system. The Re-Ir films were prepared by multi-target sputtering with iridium, rhenium and chromium as the sources. Argon and nitrogen were inlet into the chamber to be the plasma and reactive gases. The Re-Ir thin films were prepared with targets having atomic percent of 3:7 and the Re-Ir thin films were formed with 240 nm thickness. The Re-Ir thin films on tungsten carbide molding core were analyzed by scanning electron microscope(SEM) and surface roughness. Also, adhesion strength and coefficient friction of Re-Ir thin film were examined. The Re-Ir coating technique has been intensive efforts in the field of coating process because the coating technique and process have been their feature, like hardness, high elasticity, abrasion resistance and mechanical stability and also have been applied widely the industrial and biomedical areas. In this report, tungsten carbide(WC) molding core was manufactures using high performance precision machining and the efforts of Re-Ir coating on the surface roughness.

Hard Coatings on Polycarbonate Plate Using Poly(benzoylphenylene) and Its Copolymers (폴리카보네이트 판 위에 Poly(benzoylphenylene)과 그의 공중합체들을 이용한 하드 코팅)

  • Shin, Yeon-Rok;Shin, Young-Jae;Yang, Do-Hyeon;Oh, Mee-Hye;Yoon, Yeo-Seong;Shin, Jae-Sup
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.427-432
    • /
    • 2008
  • Hard coatings were deposited on a polycarbonate plate as potential substitutes for glass in cars. In this research polyphenylene derivatives were synthesized and the coatings were conducted on a polycarbonate plate. Poly(benzoylphenylene) and its phenylene copolymers were synthesized. Using poly (benzoylphenylene), the coating showed 1H class of pencil hardness. And using its copolymers, the coating showed 2H class of pencil hardness. The copolymer also showed the better abrasion resistance than homopoly (benzoylphenylene).

Effect of Vinyl Group Content of the Functionalized Liquid Butadiene Rubber as a Processing Aid on the Properties of Silica Filled Rubber Compounds

  • Kim, Donghyuk;Ahn, Byungkyu;Ryu, Gyeongchan;Hwang, Kiwon;Song, Sanghoon;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.56 no.3
    • /
    • pp.152-163
    • /
    • 2021
  • Liquid butadiene rubber (LqBR) is used as a processing aid and plays a vital role in the manufacture of high-performance tire tread compounds. In this study, center-functionalized LqBR (C-LqBR) was polymerized with different vinyl content via anionic polymerization. The effects of the vinyl content on the properties of the compounds were investigated by partially replacing the treated distillate aromatic extract (TDAE) oil with C-LqBR in silica-filled rubber compounds. C-LqBR compounds showed a low Payne effect and Mooney viscosity regardless of the vinyl content, because of improved silica dispersion due to the ethoxysilyl group. As the vinyl content of C-LqBR increased, the optimum cure time (t90) increased owing to a decrease in the number of allylic hydrogen. Moreover, the glass transition temperature (Tg) of the compound increased, and snow traction and abrasion resistance performance decreased, whereas wet grip improved. The energy loss characteristics revealed that the hysteresis attributed to the free chain ends of C-LqBR was dominant.

A Study on the Characteristics of Laser Processing in the DLC Thin Film according to Boron Doped Content (보론 도핑 여부에 따른 DLC 박막의 레이저 가공 특성 변화 연구)

  • Son, Ye-Jin;Choi, Ji-yeon;Kim, Tae-Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.4
    • /
    • pp.155-160
    • /
    • 2019
  • Diamond Like Carbon (DLC) is a metastable form of amorphous carbon that have superior material properties such as high mechanical hardness, chemical inertness, abrasion resistance, and biocompatibility. Furthermore, its material properties can be tuned by additional doping such as nitrogen or boron. However, either pure DLC or doped DLC show poor adhesion property that makes it difficult to apply contact processing technique. Therefore we propose ultrafast laser micromachining which is non-contact precision process without mechanical degradation. In this study, we developed precision machining process of DLC thin film using an ultrafast laser by investigating the process window in terms of laser fluence and laser wavelength. We have also demonstrated various patterns on the film without generating any microcracks and debris.

Microstructure and Characterization of Overlay Welding Layer using Fe-based Composite Powders (철계 복합 분말로 제조된 오버레이 용접층의 미세조직 및 특성)

  • Min, Hong;Lee, Jong-Jae;Lee, Jin Kyu
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.214-219
    • /
    • 2019
  • In this study, the microstructure and characterization of an overlay welding layer using Fe-based composite powders are reported. The effects of the number of passes and composition of powders on the microstructure and mechanical properties are investigated in detail. The welding wire and powders are deposited twice on a stainless-steel rod using a laser overlay welding process. The microstructure and structural characterization are performed by scanning electron microscopy and X-ray diffraction. The mechanical properties of the first and second overlay layers are analyzed through the micro-Vickers-hardness tester and abrasion wear tester. In the second overlay layer, the hardness and specific wear are approximately 840 Hv and $2.0{\times}10^{-5}mm^3/Nm$, respectively. It is suggested that the increase of the volume fractions of $(Cr,Fe)_7C_3$ and NbC phases in the second welding layer enhances the hardness and wear resistance.

The Effects of Liquid Butadiene Rubber and Resins as Processing Aids on the Physical Properties of SSBR/Silica Compounds

  • Iz, Muhammet;Kim, Donghyuk;Hwang, Kiwon;Kim, Woong;Ryu, Gyeongchan;Song, Sanghoon;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.289-299
    • /
    • 2020
  • Highly aromatic (HA) oils are common processing aids used in tire tread compounds. However, they often bleed and evaporate from the vulcanizates during tire use. Thus, the mechanical and dynamical properties of the tire decrease. To overcome this problem, we investigated nonfunctionalized liquid butadiene rubber (LBR-305, Kuraray) and center-functionalized liquid butadiene rubber (C-LqBR), polymerized by anionic polymerization. In addition to the liquid butadiene rubbers, p-tert-octylphenol (P-Resin) and C5 hydrocarbon (H-Resin) tackifier resins, which can induce entanglement of rubber compounds, were researched as a processing aid to solve the bleeding problem. Liquid butadiene rubbers have significantly reduced extraction loss by crosslinking with the main rubber chain. They have also increased the abrasion resistance and showed similar or better mechanical and dynamical properties against HA oils. However, resin compounds did not show differences in extraction loss compared to HA oil compounds; instead, they showed increased wet traction.

Effect on Surface Treatment and Fatigue of STS 410 Materials (STS 410 재료의 피로 및 표면처리효과에 대한 연구)

  • Bae, Dong-Su;Kawk, Jae-Seob;Lee, Jin-Kyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.987-992
    • /
    • 2022
  • STS 410, a representative martensitic stainless steel, contains 13 % chromium and is used for building materials, automobile parts, office equipment, kitchen utensils, and tableware. In general, the strength of STS 410 changes by the carbon content, and STS 410 of low carbon has excellent toughness and high carbon has excellent abrasion resistance. In this study, a fatigue test was performed on the STS 410 material to evaluate the exact fatigue limit and to evaluate the behavior of the material against fatigue. In addition, the effect on burnishing, a kind of plastic processing that creates a smooth surface by pressing a ball or roller on the inner and outer surfaces of the material was evaluated. The fatigue limit was 509 MPa for the STS 410 material, and the result was 54.5 % of the tensile strength. The fatigue limit was 542 MPa for the specimen of diamind burnished STS 410 material, and it was 58.5 % of the tensile strength.

Alloying Effects of BCC-Fe Based Low-Alloy Steel on Mechanical and Thermal Expansion Properties for a Plant Engineering: Ab Initio Calculation (플랜트 엔지니어링을 위한 BCC-Fe 기반 저합금강의 기계적 및 열팽창 특성 합금 효과: Ab Initio 계산)

  • Myungjae Kim;Jongwook Kwak;Jiwoong Kim;Kyung-Nam Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.422-429
    • /
    • 2023
  • High-strength low-alloy steel is one of the widely used materials in onshore and offshore plant engineering. We investigated the alloying effect of solute atoms in α-Fe based alloy using ab initio calculations. Empirical equations were used to establish the effect of alloying on the Vicker's hardness, screw energy coefficient, and edge dislocation energy coefficient of the steel. Screw and edge energy coefficients were improved by the addition of V and Cr solute atoms. In addition, the addition of trace quantities of V, Cr, and Mn enhanced abrasion resistance. Solute atoms and contents with excellent mechanical properties were selected and their thermal conductivity and thermal expansion behavior were investigated. The addition of Cr atom is expected to form alloys with low thermal conductivity and thermal expansion coefficient. This study provides a better understanding of the state-of-the-art research in low-alloy steel and can be used to guide researchers to explore and develop α-Fe based alloys with improved properties, that can be fabricated in smart and cost-effective manners.

Evaluation of Environment Friendly High Performance Ternary Cement Concrete Deck Overlay Pavement by Experimental Construction (시험시공을 통한 친환경 고성능 3성분계 시멘트 콘크리트 교면 포장의 성능 평가)

  • Choi, In-Hyeok;Kim, Dae-Seong;Lee, Jun-Ho
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.85-93
    • /
    • 2011
  • This study experimented to evaluate the environment friendly high performance ternary cement concrete deck overlay pavement using mineral admixture such as fly ash and ground granulated blast-furnace slag. It was measured to find best binder mixing according to replacement rate of mineral admixture with compressive strength and flexural strength. After finding best binder, it is also experimented to evaluate durability on chloride penetration resistance, freezing- thawing resistance, scaling resistance of deicing chemicals, abrasion resistance, alkali-silica reactivity test and bonded environment friendly high performance ternary cement concrete deck overlay pavement experimented to evaluate bonded old deck and new concrete overlay pavement using special polymer cement mortar. In additions, bonded environment friendly high performance ternary cement concrete deck overlay pavement by experimental construction was evaluated at interchange bridge of North Yeoju. Result, examination was indicated better binding with binder replacement of cement 70%, ground granulated blast-furnace slag 15% and fly ash 15%. And special polymer cement mortar used in old deck and new overlay concrete was indicated better bonding both laboratory and construction.

A Study on Conservation Materials of the Lacquer Wares : the Tohoe and Goksu (칠기 하지층 충진제의 특성 비교 : 토회와 곡수)

  • Jang, Eun Jeong;Park, Jung Hae;Kim, Soo Chul
    • Journal of Conservation Science
    • /
    • v.31 no.2
    • /
    • pp.125-130
    • /
    • 2015
  • Specific techniques and materials in conservation of traditional lacquer has not been transmitted. This study aims to compare the basic characteristics of the filler which used in the base layer of lacquer conservation. Tohoe(a mixture of lacquer and Clay) and the three kinds of additives which is mixed with Tohoe and Goksu(a mixture of lacquer, wood powder and rice starch) are estimated in drying rate, impact resistance, abrasion. Among those samples, the more amount of clay causes fast dryness speed and worse cracks on the surface. The impact resistance is weakened at high amount of clay. There is no significant differences of impact resistance between both additives that is mixed with the samples and additives. The samples that are mixed with Goksu and additives show high impact resistance. In the polishing test, the more amount of filling powders show higher grinding degree and the sample that are mixed with wood powder and charcoal show higher degree as well. The highest grinding degree is Maekchil and Goksu but the lowest one is the sample of the rooftile powder mixture.