Browse > Article
http://dx.doi.org/10.7473/EC.2021.56.3.152

Effect of Vinyl Group Content of the Functionalized Liquid Butadiene Rubber as a Processing Aid on the Properties of Silica Filled Rubber Compounds  

Kim, Donghyuk (School of Chemical Engineering, Pusan National University)
Ahn, Byungkyu (School of Chemical Engineering, Pusan National University)
Ryu, Gyeongchan (School of Chemical Engineering, Pusan National University)
Hwang, Kiwon (School of Chemical Engineering, Pusan National University)
Song, Sanghoon (School of Chemical Engineering, Pusan National University)
Kim, Wonho (School of Chemical Engineering, Pusan National University)
Publication Information
Elastomers and Composites / v.56, no.3, 2021 , pp. 152-163 More about this Journal
Abstract
Liquid butadiene rubber (LqBR) is used as a processing aid and plays a vital role in the manufacture of high-performance tire tread compounds. In this study, center-functionalized LqBR (C-LqBR) was polymerized with different vinyl content via anionic polymerization. The effects of the vinyl content on the properties of the compounds were investigated by partially replacing the treated distillate aromatic extract (TDAE) oil with C-LqBR in silica-filled rubber compounds. C-LqBR compounds showed a low Payne effect and Mooney viscosity regardless of the vinyl content, because of improved silica dispersion due to the ethoxysilyl group. As the vinyl content of C-LqBR increased, the optimum cure time (t90) increased owing to a decrease in the number of allylic hydrogen. Moreover, the glass transition temperature (Tg) of the compound increased, and snow traction and abrasion resistance performance decreased, whereas wet grip improved. The energy loss characteristics revealed that the hysteresis attributed to the free chain ends of C-LqBR was dominant.
Keywords
liquid butadiene rubber; silica-filled compound; anionic polymerization; vulcanizate structure; rubber compounding;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. A. Antkowiak, A. E. Oberster, A. F. Halasa, and D. P. Tate, "Temperature and concentration effects on polar-modified alkyllithium polymerizations and copolymerizations", J. Polym. Sci. Part A-1 Polym. Chem., 10, 1319 (1972).   DOI
2 P. J. Flory, "Statistical mechanics of swelling of network structures", J. Chem. Phys., 18, 108 (1950).   DOI
3 J. Y. Lee, B. Ahn, W. Kim, H. Moon, H. J. Paik, and W. Kim, "The effect of accelerator contents on the vulcanizates structures of SSBR silica vulcanizates", Compos. Interfaces, 24, 563 (2016).   DOI
4 S. Satoyuki and Y. Chikashi, U.S. Patent 2005350603 (2005).
5 P. J. Flory, "Principles of polymer chemistry", p. 576, Cornell University Press, New York, NY, USA, 1953.
6 B. Ahn, N. Park, D. Kim, and W. Kim, "Influence of end-functionalized solution styrene-butadiene rubber on silica-filled vulcanizates with various silica-silane systems", Rubber Chem. Technol., 92, 364 (2019).   DOI
7 D. Derouet, S. Forgeard, and J. C. Brosse, "Synthesis of alkoxysilyl-terminated polyisoprenes by means of "living" anionic polymerization, 1. Modeling of the termination step by studying the reaction of butyllithium with various alkoxysilane reagents", Macromol. Chem. Phys., 199, 1835 (1998).   DOI
8 F. Salort and S. K. Henning, "Silane-terminated liquid poly (butadienes) in tread formulations: A mechanistic study", Rubber Chem. Technol., 94, 24 (2020).
9 European Union. Directive 2005/69/EC of the European Parliament and of the Council of 16 Nov 2005. Off. J. Eur. Union, dated 12 September (2005).
10 S. Ezzoddin, A. Abbasian, M. Aman-Alikhani, and S. T. Ganjali, "The influence of non-carcinogenic petroleum-based pprocess oilson tire compounds' performance", Iran. Polym. J., 22, 697 (2013).   DOI
11 S. S. Choi, K. H. Chung, and C. Nah, "Improvement of properties of silica-filled styrene-butadiene rubber (SBR) compounds using acrylonitrile-styrene butadiene rubber (NSBR)", Polym. Adv. Technol., 14, 557 (2003).   DOI
12 H. Takuya and M. Tochiro, U.S. Patent 2005146115 (2003).
13 K. Hirata and M. Moriguchi, "Bio-based liquid rubber for tire application", Rubber World, 256, 50 (2017).
14 P. J. Nieuwenhuizen, J. Reedijk, M. Van Duin, and W. J. McGill, "Thiuram-and dithiocarbamate-accelerated sulfur vulcanization from the chemist's perspective; methods, materials and mechanisms reviewed", Rubber Chem. Technol., 70, 368 (1997).   DOI
15 N. Rattanasom, T. Saowapark, and C. Deeprasertkul, "Reinforcement of natural rubber with silica/carbon black hybrid filler", Polym. Test., 26, 369 (2007).   DOI
16 A. F. Halasa, J. Prentis, B. Hsu, and C. Jasiunas, "High vinyl high styrene solution SBR", Polymer, 46, 4166 (2005).   DOI
17 E. Padenko, P. Berki, B. Wetzel, and J. Karger-Kocsis, "Mechanical and abrasion wear properties of hydrogenated nitrile butadiene rubber of identical hardness filled with carbon black and silica", J. Reinf. Plast. Comp., 35, 1, (2016).
18 C. F. Derham, R. Newell, and P. M. Swift, "The use of silica for improving tread grip in winter tyres", NR Technol., 19, 81 (1988).
19 S. Maghami, "Silica-filled tire tread compounds: An investigation into the viscoelastic properties of the rubber compounds and their relation to tire performance", Ph.D. Thesis, University of Twente, Enschede, the Netherlands, 2016.
20 K. Suchiva, C. Sirisinha, P. Sae-oui, and P. Thapthong, "Development of tyre tread compounds for good wet-grip: effects of rubber type", IOP Conf. Ser. Mater. Sci. Eng., 526, 012035 (2019).   DOI
21 A. S. Hashim, B. Azahari, Y. Ikeda, and S. Kohjiya, "The effect of bis (3-triethoxysilylpropyl) tetrasulfide on silica reinforcement of styrene-butadiene rubber", Rubber Chem. Technol., 71, 289 (1998).   DOI
22 M. J. Wang, "Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates", Rubber Chem Technol., 71, 520 (1998).   DOI
23 T. Kitamura, D. F. Lawson, K. Morita, and Y. Ozawa, "Anionic polymerization initiators and reduced hysteresis products therefom", U.S. Patent 5393721(1995).
24 A. Ventura, T. Chenal, M. Bria, F. Bonnet, P. Zinck, Y. Ngono-Ravache, and M. Visseaux, "Trans-stereospecific polymerization of butadiene and random copolymerization with styrene using borohydrido neodymium/magnesium dialkyl catalysts", Eur. Polym. J., 49, 4130 (2013).   DOI
25 Y. H. Ko and S. W. Cheen, "End-modified styrene-diene block copolymer prepared using polyfunctional coupling agent", U.S. Patent 6777493 (2004).
26 X. Liu, S. Zhao, X. Zhang, X. Li, and Y. Bai, "Preparation, structure, and properties of solution-polymerized styrenebutadiene rubber with functionalized end-groups and its silica-filled composites", Polymer, 55, 1964 (2014).   DOI
27 T. Nakazono and A. Matsumoto, "Mechanical properties and thermal aging behavior of styrene-butadiene rubbers vulcanized using liquid diene polymers as the plasticizer", J. Appl. Polym. Sci., 118, 2314 (2010).   DOI
28 S. Han, W. S. Kim, D. Y. Mun, B. Ahn, and W. Kim, "Effect of coupling agents on the vulcanizate structure of carbon black filled natural rubber", Compos. Interfaces, 27, 355 (2020).   DOI
29 C. R. Parks and R. J. Brown, "Crosslink density of elastomers. a new gas chromatographic method", Rubber Chem. Technol., 49, 233 (1976).   DOI
30 H. Dorrie, C. Schroder, and B. Wies, "Winter tires: operating conditions, tire characteristics and vehicle driving behavior", Tire Sci. Technol., 38, 119 (2010).   DOI
31 T. Kataoka, P. B. Zetterlund, and B. Yamada, "Effects of storage and service on tire performance: oil component content and swelling behavior", Rubber Chem. Technol., 76, 507 (2003).   DOI
32 M. Gruendken, "Liquid rubber for safer and faster tires" In Proceedings of the Tire Technology Expo 2018, Hannover, Germany, 14-16 February (2017).
33 K. Ikeda, "Bio liquid polymer for winter tires" In Proceedings of the Tire Technology Expo 2018, Hanover, Germany, 20-22 February (2018).
34 V. P. Sierra, J. Mann, C. Van De Pol, N. Kendziorra, K. Herzog, C. Recker, and N. Mueller, "Rubber blend with improved rolling resistance behavior" U.S. Patent 9080042 (2015).
35 D. Kim, B. Ahn, K. Kim, J. Lee, I. J. Kim, and W. Kim, "Effects of molecular weight of functionalized liquid butadiene rubber as a processing aid on the properties of SSBR/Silica compounds", Polymers, 13, 850 (2021).   DOI
36 J. K. Hirata, "Effects of crosslinkable plasticizers", RFP Rubber Fibers Plast. Int., 6, 212 (2011).
37 T. E. Hogan, W. L. Hergenrother, and M. Tallman, "Amine-containing alkoxysilyl-functionalized polymers", U.S. Patent 8148486 (2012).
38 W. L. Hsu and A. F. Halasa, "Rubbers having improved interaction with silica", U.S. Patent 5652310 (1997).
39 K. Taniguchi, K. Tsukimawashi, N. Kobayashi, and T. Tadaki, "Conjugated-diolefin (co) polymer rubber and process for producing the same", U.S. Patent 7528199 (2009).
40 R. Herpich, T. Fruh, L. Heiliger, and K. Schilling, "Silica gel-containing rubber compounds with organosilicon compounds as compounding agent", U.S. Patent 6593418 (2003).
41 A. R. Payne and R. E. Whittaker, "Low strain dynamic properties of filled rubbers", Rubber Chem. Technol., 44, 440 (1971).   DOI
42 S. S. Choi, "Improvement of the filler dispersion in silica-filled SBR compounds using low molecular weight polybutadiene treated with maleic anhydride", Elastomers Compos., 41, 10 (2006).
43 D. Derouet, S. Forgeard, and J. C. Brosse, "Synthesis of alkoxysilyl-terminated polyisoprenes by means of 'living' anionic Polymerization, 2. Synthesis of trialkoxysilyl-terminated 1, 4-polyisoprenes by reaction of polyisoprenyllithium with various functional trialkoxysilanes selected as end-capping reagents", Macromol. Chem. Phys., 200, 10 (1999).   DOI