• 제목/요약/키워드: a-plane sapphire substrate

검색결과 59건 처리시간 0.03초

사파이어 기판에 펄스 레이저 증착법으로 성장된 AlN 박막의 특성 (Characterization of AlN Thin Films Grown by Pulsed Laser Deposition on Sapphire Substrate)

  • 정은희;정준기;정래영;김성진;박상엽
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.551-556
    • /
    • 2013
  • AlN films with c-axis orientation and thermal conductivity characteristics were deposited by using Pulsed Laser Deposition and the films were characterized by changing the deposition conditions. In particular, we investigated the optimal conditions for the application of a heat sinking plane AlN thin film. Epitaxial AlN films were deposited on sapphire ($c-Al_2O_3$) single crystals by pulsed laser deposition (PLD) with an AlN target. AlN films were deposited at a fixed pressure of $2{\times}10^{-5}$ Torr, while the substrate temperature was varied from 500 to $700^{\circ}C$. According to the experimental results of the growth temperature of the thin film, AlN thin films were confirmed with a highly c-axis orientation, maximum grain size, and high thermal conductivity at $650^{\circ}C$. The thermal conductivity of the AlN thin film was found to increase compared to bulk AlN near the band gap value of 6.2 eV.

Nanopatterned Surface Effect on the Epitaxial growth of InGaN/GaN Multi-quantum Well Light Emitting Diode Structure

  • Kim, Keun-Joo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권2호
    • /
    • pp.40-43
    • /
    • 2009
  • The authors fabricated a nanopatterned surface on a GaN thin film deposited on a sapphire substrate and used that as an epitaxial wafer on which to grow an InGaN/GaN multi-quantum well structure with metal-organic chemical vapor deposition. The deposited GaN epitaxial surface has a two-dimensional photonic crystal structure with a hexagonal lattice of 230 nm. The grown structure on the nano-surface shows a Raman shift of the transverse optical phonon mode to $569.5\;cm^{-1}$, which implies a compressive stress of 0.5 GPa. However, the regrown thin film without the nano-surface shows a free standing mode of $567.6\;cm^{-1}$, implying no stress. The nanohole surface better preserves the strain energy for pseudo-morphic crystal growth than does a flat plane.

HVPE 방법으로 성장한 Alpha-Ga2O3의 특성 분석 (Characterization of Alpha-Ga2O3 Template Grown by Halide Vapor Phase Epitaxy)

  • 손호기;라용호;이영진;이미재;김진호;황종희;김선욱;임태영;전대우
    • 한국전기전자재료학회논문지
    • /
    • 제31권6호
    • /
    • pp.357-361
    • /
    • 2018
  • We demonstrated a crack-free ${\alpha}-Ga_2O_3$ on sapphire substrate by horizontal halide vapor phase epitaxy (HVPE). Oxygen-and gallium chloride-synthesized Ga metal and HCl were used as the precursors, and $N_2$ was used as the carrier gas. The HCl flow and growth temperature were controlled in the ranges of 10~30 sccm and $450{\sim}490^{\circ}C$, respectively. The surface of ${\alpha}-Ga_2O_3$ template grown at $470^{\circ}C$ was flat and the root-mean-square (RMS) roughness was ~2 nm. The full width at half maximum (FWHM) values for the symmetric-plane diffractions, were as small as 50 arcsec and those for the asymmetric-plane diffractions were as high as 1,800 arcsec. The crystal quality of ${\alpha}-Ga_2O_3$ on sapphire can be controlled by varying the HCl flow rate and growth temperature.

Epitaxial growth of Pt Thin Film on Basal-Plane Sapphire Using RF Magnetron Sputtering

  • 이종철;김신철;송종환;이충만
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1998년도 제14회 학술발표회 논문개요집
    • /
    • pp.41-41
    • /
    • 1998
  • Rare earth metal films have been used as a buffer layer for growing ferroelectric t thin film or a seed layer for magnetic multilayer. But when it was deposited on s semiconductor substrates for the application of magneto-optic (MO) storage media, it i is difficult to exactly measure magnetic cons떠nts due to shunting current, and so it n needs to grow metal films on insulator substrate to reduce such effect. Recently, it w was reported that ultra-thin Pt layer were epitaxially grown on A12O:J by ion beam s sputtering in 비떠 high vacuum and it can be used as a seed layer for the growth of C Co-contained magnetic multilayer. In this stu$\phi$, Pt thin film were epi떠xially grown on AI2D3 ($\alpha$)OJ) by RF magnetron s sputtering. The crystalline structure was analyzed by transmission electron microscope ( (TEM) and Rutherford Back Scattering (RBS)/Ion Channeling. In TEM study, Pt was b believed to be twinned on AI잉3($\alpha$)01) su$\pi$ace about Pt(ll1) plane.Moreover, RBS c channeling spectra showed that minimum scattering yield of Pt(111)/AI2O:J(1$\alpha$)OJ) was 4 4% and Pt(11J)/AI2D3($\alpha$)OJ) had 3-fold symmetry.

  • PDF

Polarity of freestanding GaN grown by hydride vapor phase epitaxy

  • Lee, Kyoyeol;Auh, Keun-Ho
    • 한국결정성장학회지
    • /
    • 제11권3호
    • /
    • pp.106-111
    • /
    • 2001
  • The freestanding GaN substrates were grown by hydride vapor phase epitaxy (HVPE) on (0001) sapphire substrate and prepared by using laser induced lift-off. After a mechanical polishing on both Ga and N-surfaces of GaN films with 100$\mu\textrm{m}$ thick, their polarities have been investigated by using chemical etching in phosphoric acid solution, 3 dimensional surface profiler and Auger electron spectroscopy (AES). The composition of the GaN film measured by AES indicted that Ga and N terminated surfaces have the different N/Ga peak ratio of 0.74 and 0.97, respectively. Ga-face and N-face of GaN revealed quite different chemical properties: the polar surfaces corresponding to (0001) plane are resistant to a phosphoric acid etching whereas N-polar surfaces corresponding to(0001) are chemically active.

  • PDF

GaN의 기상성장과 특성 (Vapor Phase Epitaxial Growth and Properties of GaN)

  • 김선태;문동찬
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1996년도 춘계학술대회 논문집
    • /
    • pp.72-75
    • /
    • 1996
  • A hydride vapor phase epitaxy (HVPE) method is performed to prepare the GaN thin films on c-plane sapphire substrate. The full-width at half maximum of double crystal X-ray rocking curves from 20$\mu\textrm{m}$-thick GaN was 576 arcsecond. The photoluminescence spectrum measured 10 K shows the hallow bound exciton (I$_2$) line and weak donor-acceptor peak, however, there was not observed deep donor-acceptor pair recombination indicate the GaN crystals prepared in this study are of high purity and high crystalline quality. The GaN layer is n-type conducting with electron mobility of 72 $\textrm{cm}^2$/V$.$sec and with carrier concentration of 6 x 10$\^$18/cm/sup-3/.

  • PDF

Semi-insulation Behavior of GaN Layer Grown on AlN Nucleation Layer

  • 이민수;김효정;이현휘
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.132-132
    • /
    • 2011
  • The sheet resistance (Rs) of undoped GaN films on AlN/c-plane sapphire substrate was investigated in which the AlN films were grown by R. F. magetron sputtering method. The Rs was strongly dependent on the AlN layer thickness and semi-insulating behavior was observed. To clarify the effect of crystalline property on Rs, the crystal structure of the GaN films has been studied using x-ray scattering and transmission electron microscopy. A compressive strain was introduced by the presence of AlN nucleation layer (NL) and was gradually relaxed as increasing AlN NL thickness. This relaxation produced more threading dislocations (TD) of edge-type. Moreover, the surface morphology of the GaN film was changed at thicker AlN layer condition, which was originated by the crossover from planar to island grains of AlN. Thus, rough surface might produce more dislocations. The edge and mixed dislocations propagating from the interface between the GaN film and the AlN buffer layer affected the electric resistance of GaN film.

  • PDF

Si(111) 기판 위에 MOCVD 법으로 성장시킨 GaN의 성장 특성에 관한 TEM 분석 (A TEM Study on Growth Characteristics of GaN on Si(111) Substrate using MOCVD)

  • 신희연;정성훈;유지범;서수정;양철웅
    • 한국표면공학회지
    • /
    • 제36권2호
    • /
    • pp.135-140
    • /
    • 2003
  • The difference in lattice parameter and thermal expansion coefficient between GaN and Si which results in many defects into the grown GaN is larger than that between GaN and sapphire. In order to obtain high quality GaN films on Si substrate, it is essential to understand growth characteristics of GaN. In this study, GaN layers were grown on Si(111) substrates by MOCVD at three different GaN growth temperatures ($900^{\circ}C$, $1,000^{\circ}C$ and $1,100^{\circ}C$), using AlN and LT-GaN buffer layers. Using TEM, we carried out the comparative investigation of growth characteristics of GaN by characterizing lattice coherency, crystallinity, orientation relationship and defects formed (transition region, stacking fault, dislocation, etc). The localized region with high defect density was formed due to the lattice mismatch between AlN buffer layer and GaN. As the growth temperature of GaN increases, the defect density and surface roughness of GaN are decreased. In the case of GaN grown at $1,100^{\circ}$, growth thickness is decreased, and columns with out-plane misorientation are formed.

Vapor Transport Epitaxy에 의한 GaN의 성장과 특성 (Growth and Properties of GaN by Vapor Transport Epitaxy)

  • 이재범;김선태
    • 한국재료학회지
    • /
    • 제16권8호
    • /
    • pp.479-484
    • /
    • 2006
  • Highly c-axis oriented poly-crystalline GaN with a dimension of $1{\sim}3\;{\mu}m$ was deposited on $c-Al_2O_3$ substrate by vapor transport epitaxy (VTE) method at the temperature range of $900{\sim}1150^{\circ}C$. XRD intensities from (00'2) plane of grown GaNs were increased with reaction conditions which indicate the improvement of the crystal quality. In the PL spectra measured at 10 K, the spectrum composed with the neutral-donor bound exciton-related emission at 3.47 eV, crystal defect-related emission band at 3.42 eV and with its phonon replicas. The fact that intensity of $I_2$ were increased and FWHM were decreased with growth conditions means that the quality of GaN crystals were improved. With this simple VTE technology, we confirm that the GaNs were simply deposited on sapphire substrate and crystal quality related to optical properties of GaN grown by VTE were relatively good. PL emission without deep level emission in spite of polycrystalline structure can be applicable to the fabrication of large area and low cost optical devices using poly-GaN grown by VTE.

Influences of direction for hexagonal-structure arrays of lens patterns on structural, optical, and electrical properties of InGaN/GaN MQW LEDs

  • Lee, Kwang-Jae;Kim, Hyun-June;Park, Dong-Woo;Jo, Byoung-Gu;Oh, Hye-Min;Hwang, Jeong-Woo;Kim, Jin-Soo;Lee, Jin-Hong;Leem, Jae-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.153-153
    • /
    • 2010
  • Recently, to develop GaN-based light-emitting diodes (LEDs) with better performances, various approaches have been suggested by many research groups. In particular, using the patterned sapphire substrate technique has shown the improvement in both internal quantum efficiency and light extraction properties of GaN-based LEDs. In this paper, we discuss the influences of the direction of the hexagonal-structure arrays of lens-shaped patterns (HSAPs) formed on sapphire substrates on the crystal, optical, and electrical properties of InGaN/GaN multi-quantum-well (MQW) LEDs. The basic direction of the HSAPs is normal (HSAPN) with respect to the primary flat zone of a c-plane sapphire substrate. Another HSAP tilted by 30o (HSAP30) from the HSAPN structure was used to investigate the effects of the pattern direction. The full width at half maximums (FWHMs) of the double-crystal x-ray diffraction (DCXRD) spectrum for the (0002) and (1-102) planes of the HSAPN are 320.4 and 381.6 arcsecs., respectively, which are relatively narrower compared to those of the HSP30. The photoluminescence intensity for the HSAPN structure was ~1.2 times stronger than that for the HSAP30. From the electroluminescence (EL) measurements, the intensity for both structures are almost similar. In addition, the effects of the area of the individual lens pattern consisting of the hexagonal-structure arrays are discussed using the concept of the planar area fraction (PAF) defined as the following equation; PAF = [1-(patterns area/total unit areas)] For the relatively small PAF region up to 0.494, the influences of the HSAP direction on the LED characteristics were significant. However, the direction effects of the HSAP became small with increasing the PAF.

  • PDF