Browse > Article
http://dx.doi.org/10.4313/TEEM.2009.10.2.040

Nanopatterned Surface Effect on the Epitaxial growth of InGaN/GaN Multi-quantum Well Light Emitting Diode Structure  

Kim, Keun-Joo (Department of Mechanical Engineering and Research Center of Industrial Technology, Chonbuk National University)
Publication Information
Transactions on Electrical and Electronic Materials / v.10, no.2, 2009 , pp. 40-43 More about this Journal
Abstract
The authors fabricated a nanopatterned surface on a GaN thin film deposited on a sapphire substrate and used that as an epitaxial wafer on which to grow an InGaN/GaN multi-quantum well structure with metal-organic chemical vapor deposition. The deposited GaN epitaxial surface has a two-dimensional photonic crystal structure with a hexagonal lattice of 230 nm. The grown structure on the nano-surface shows a Raman shift of the transverse optical phonon mode to $569.5\;cm^{-1}$, which implies a compressive stress of 0.5 GPa. However, the regrown thin film without the nano-surface shows a free standing mode of $567.6\;cm^{-1}$, implying no stress. The nanohole surface better preserves the strain energy for pseudo-morphic crystal growth than does a flat plane.
Keywords
LED; InGaN/GaN; Multi-quantum well; Nanopatterned surface;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Nakamura and G. Fasol, The Blue Laser Diode. GaN Based Light Emitters andLasers, (Springer, Berlin, 1997) P. 203
2 G. S. Shin, S. W. Hwang, and K. Kim, Trans. Electr. Electron. Mater4,19(2003).
3 D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, R. H.Homg, Y. S. Yu, and M. H. Pan, J. Electrochem. Soc. 153, G765(2006)   DOI   ScienceOn
4 V. A. Savastenko and A. U. Sheleg, Phys. Status Solidi A, 48, K135(1978).   DOI
5 K. Kim and S. J. Chung, Trans. Electr. Electron. Mater. 2, 24 (2001)
6 M. Jamil, J. R. Grandusky, V. Jindal, F. Shahedipour-Sandvik, S.Guha, and M. Arif, Appl. Phys. Lett. 87, 082103 (2005).   DOI   ScienceOn
7 T. S. Jeong, C. J. Youn, M. S. Han, J. W. Yang, and K. Y. Lim,Appl. Phys. Lett. 83, 3483 (2003)   DOI   ScienceOn
8 T. Detchprohm, K. Hiramatsu, K. Itoh, and I. Akasaki, Jpn. J. Appl.Phys.31,L1454(1992).   DOI
9 K. Kim and C. B. Park, Thin Solid Films, 330, 139 (1998).   DOI   ScienceOn
10 K. Kim, Trans. Electr. Electron. Mater. 5 174 (2004).
11 J. Park, J.-K.. Oh, K.-W. Kwon, Y.-H. Kim, S.-S. Jo, J. K.. Lee, andS.-W. Ryu, IEEE Photonics Technol. Lett. 20, 321 (2008).   DOI   ScienceOn
12 D. C. Look and J. R. Sizelove, Phys. Rev. Lett. 82, 1237 (1999)   DOI   ScienceOn
13 T. S. Zheleva, 0. H. Nam, M. D. Bremser, and R. F. Davis, Appl.Phys. Lett. 71,2472 (1997).   DOI   ScienceOn
14 C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, P. Yu, H. C. Kuo, T. C.Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, Appl. Phys. Lett. 93,081108(2008).   DOI   ScienceOn
15 L. S. Wang, K. Y. Zang, S. Tripathy, and S. J. Chua, Appl. PhysLett. 85, 5881(2004)   DOI   ScienceOn
16 H. Hartono, C. B. Soh, S. Y. Chow, S. J. Chua, and E. A. Fitzgerald,Appl. Phys. Lett. 90, 171917 (2007).   DOI   ScienceOn
17 A. Sakai, H. Sunakawa, and A. Usui, Appl. Phys. Lett. 71, 2259(1997).   DOI   ScienceOn
18 T. V. Cuong, H. S. Cheong, H. G. Kim, H. Y. Kim, C.-H. Hong, E. KSuh, H. K. Cho, and B. H. Kong, Appl. Phys. Lett. 90,131107 (2007)   DOI   ScienceOn