Browse > Article
http://dx.doi.org/10.4313/JKEM.2018.31.6.357

Characterization of Alpha-Ga2O3 Template Grown by Halide Vapor Phase Epitaxy  

Son, Hoki (Korea Institute of Ceramic Engineering & Technology)
Ra, Yong-Ho (Korea Institute of Ceramic Engineering & Technology)
Lee, Young-Jin (Korea Institute of Ceramic Engineering & Technology)
Lee, Mi-Jai (Korea Institute of Ceramic Engineering & Technology)
Kim, Jin-Ho (Korea Institute of Ceramic Engineering & Technology)
Hwang, Jonghee (Korea Institute of Ceramic Engineering & Technology)
Kim, Sun Woog (Korea Institute of Ceramic Engineering & Technology)
Lim, Tae-Young (Korea Institute of Ceramic Engineering & Technology)
Jeon, Dae-Woo (Korea Institute of Ceramic Engineering & Technology)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.31, no.6, 2018 , pp. 357-361 More about this Journal
Abstract
We demonstrated a crack-free ${\alpha}-Ga_2O_3$ on sapphire substrate by horizontal halide vapor phase epitaxy (HVPE). Oxygen-and gallium chloride-synthesized Ga metal and HCl were used as the precursors, and $N_2$ was used as the carrier gas. The HCl flow and growth temperature were controlled in the ranges of 10~30 sccm and $450{\sim}490^{\circ}C$, respectively. The surface of ${\alpha}-Ga_2O_3$ template grown at $470^{\circ}C$ was flat and the root-mean-square (RMS) roughness was ~2 nm. The full width at half maximum (FWHM) values for the symmetric-plane diffractions, were as small as 50 arcsec and those for the asymmetric-plane diffractions were as high as 1,800 arcsec. The crystal quality of ${\alpha}-Ga_2O_3$ on sapphire can be controlled by varying the HCl flow rate and growth temperature.
Keywords
${\alpha}-Ga_2O_3$; Growth rate; HVPE; Refractive index;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Kaneko, H. Kawanowa, H. Ito, and S. Fujita, Jpn. J. Appl. Phys., 51, 020201 (2012). [DOI: https://doi.org/10.1143/JJAP.51.020201]
2 D. Y. Guo, X. L. Zhao, Y. S. Zhi, W. Cui, Y. Q. Huang, Y. H. An, P. G. Li, Z. P. Wu, and W. H. Tang, Mater. Lett., 164, 364 (2016). [DOI: https://doi.org/10.1016/j.matlet.2015.11.001]   DOI
3 S. C. Vanithakumari and K. K. Nanda, Adv. Mater., 21, 3581 (2009). [DOI: https://doi.org/10.1002/adma.200900072]   DOI
4 D. Guo, Z. Wu, P. Li, Y. An, H. Liu, X. Guo, H. Yan, G. Wang, C. Sun, L. Li, and W. Tang, Opt. Mater. Express, 4, 1067 (2014). [DOI: https://doi.org/10.1364/OME.4.001067]   DOI
5 C. Jin, S. Park, H. Kim, and C. Lee, Sens. Actuators, B, 161, 223 (2012). [DOI: https://doi.org/10.1016/j.snb.2011.10.023]   DOI
6 K. Sasaki, A. Kuramata, T. Masui, E. G. Villora, K. Shimamura, and S. Yamakoshi. Appl. Phys. Express, 5, 035502 (2012). [DOI: https://doi.org/10.1143/APEX.5.035502]   DOI
7 M. Higashiwaki, K. Sasaki, T. Kamimura, M. H. Wong, D. Krishnamurthy, A. Kuramata, T. Masui, and S. Yamakoshi, Appl. Phys. Lett., 103, 123511 (2013). [DOI: https://doi.org/10.1063/1.4821858]   DOI
8 M. Imura, K. Nakano, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi, and A. Bandoh, Jpn. J. Appl. Phys., 45, 8639 (2006). [DOI: https://doi.org/10.1143/JJAP.45.8639]   DOI
9 K. Akaiwa, K. Kaneko, K. Ichino, and S. Fujita, Jpn. J. Appl. Phys., 55, 1202BA (2016). [DOI: https://doi.org/10.7567/jjap.55.1202ba]   DOI
10 D. Shinohara and S. Fujita, Jpn. J. Appl. Phys., 47, 7311 (2008). [DOI: https://doi.org/10.1143/JJAP.47.7311]   DOI
11 A. L. Patterson, Phys. Rev., 56, 978 (1939). [DOI: https://doi.org/10.1103/PhysRev.56.978]   DOI
12 J. Bai, T. Wang, P. J. Parbrook, K. B. Lee, and A. G. Cullis, J. Cryst. Growth, 282, 290 (2005). [DOI: https://doi.org/10.1016/j.jcrysgro.2005.05.023]   DOI
13 Y. Chen, H. Song, D. Li, X. Sun, H. Jiang, Z. Li, G. Miao, Z. Zhang, and Y. Zhou, Mater. Lett., 114, 26 (2014). [DOI: https://doi.org/10.1016/j.matlet.2013.09.096]   DOI