• 제목/요약/키워드: a-Browder theorem

검색결과 28건 처리시간 0.018초

WEYL TYPE-THEOREMS FOR DIRECT SUMS

  • Berkani, Mohammed;Zariouh, Hassan
    • 대한수학회보
    • /
    • 제49권5호
    • /
    • pp.1027-1040
    • /
    • 2012
  • The aim of this paper is to study the Weyl type-theorems for the orthogonal direct sum $S{\oplus}T$, where S and T are bounded linear operators acting on a Banach space X. Among other results, we prove that if both T and S possesses property ($gb$) and if ${\Pi}(T){\subset}{\sigma}_a(S)$, ${\PI}(S){\subset}{\sigma}_a(T)$, then $S{\oplus}T$ possesses property ($gb$) if and only if ${\sigma}_{SBF^-_+}(S{\oplus}T)={\sigma}_{SBF^-_+}(S){\cup}{\sigma}_{SBF^-_+}(T)$. Moreover, we prove that if T and S both satisfies generalized Browder's theorem, then $S{\oplus}T$ satis es generalized Browder's theorem if and only if ${\sigma}_{BW}(S{\oplus}T)={\sigma}_{BW}(S){\cup}{\sigma}_{BW}(T)$.

NECESSARY AND SUFFICIENT CONDITIONS FOR THE EXISTENCE OF SOLUTIONS TO OPERATOR EQUATIONS

  • Park, Sehie
    • 대한수학회보
    • /
    • 제27권2호
    • /
    • pp.151-155
    • /
    • 1990
  • Recently, H.Z.Ming [7] obtained a necessary and sufficient condition for the existence of a solution to a general operator equation. In the present paper, we obtain such conditions in general forms and give some examples. We begin with the well-known Fan-Browder fixed point theorem, from which we deduce two general theorems on such necessary and sufficient conditiions. We give some examples of such conditions, which are improved versions of fixed point theorems of Halpern-Bergman [5], Ky Fan [3], [4], Kaczynski [6], Reich [9], Schauder [10], Tychonoff [11], and Ming [7]. In fact, we restate Ming's result in its correct form. The following is known as the Fan-Browder fixed point theorem [1], [2].

  • PDF

ELEMENTS OF THE KKM THEORY FOR GENERALIZED CONVEX SPACE

  • Park, Se-Hei
    • Journal of applied mathematics & informatics
    • /
    • 제7권1호
    • /
    • pp.1-28
    • /
    • 2000
  • In the present paper, we introduce fundamental results in the KKM theory for G-convex spaces which are equivalent to the Brouwer theorem, the Sperner lemma, and the KKM theorem. Those results are all abstract versions of known corresponding ones for convex subsets of topological vector spaces. Some earlier applications of those results are indicated. Finally, We give a new proof of the Himmelberg fixed point theorem and G-convex space versions of the von Neumann type minimax theorem and the Nash equilibrium theorem as typical examples of applications of our theory.

ON WEYL'S THEOREM FOR QUASI-CLASS A OPERATORS

  • Duggal Bhagwati P.;Jeon, In-Ho;Kim, In-Hyoun
    • 대한수학회지
    • /
    • 제43권4호
    • /
    • pp.899-909
    • /
    • 2006
  • Let T be a bounded linear operator on a complex infinite dimensional Hilbert space $\scr{H}$. We say that T is a quasi-class A operator if $T^*\|T^2\|T{\geq}T^*\|T\|^2T$. In this paper we prove that if T is a quasi-class A operator and f is a function analytic on a neigh-borhood or the spectrum or T, then f(T) satisfies Weyl's theorem and f($T^*$) satisfies a-Weyl's theorem.

A NEW VECTOR QUASI-EQUILIBRIUM-LIKE PROBLEM

  • Lee, Byung-Soo
    • 대한수학회논문집
    • /
    • 제24권4호
    • /
    • pp.523-528
    • /
    • 2009
  • In this paper, we consider the existence of solutions to some generalized vector quasi-equilibrium-like problem under a c-diagonal quasi-convexity assumptions, but not monotone concepts. For an example, in the proof of Theorem 1, the c-diagonally quasi-convex concepts of a set-valued mapping was used but monotone condition was not used. Our problem is a new kind of equilibrium problems, which can be compared with those of Hou et al. [4].

Generalized Weyl's Theorem for Some Classes of Operators

  • Mecheri, Salah
    • Kyungpook Mathematical Journal
    • /
    • 제46권4호
    • /
    • pp.553-563
    • /
    • 2006
  • Let A be a bounded linear operator acting on a Hilbert space H. The B-Weyl spectrum of A is the set ${\sigma}_{B{\omega}}(A)$ of all ${\lambda}{\in}\mathbb{C}$ such that $A-{\lambda}I$ is not a B-Fredholm operator of index 0. Let E(A) be the set of all isolated eigenvalues of A. Recently in [6] Berkani showed that if A is a hyponormal operator, then A satisfies generalized Weyl's theorem ${\sigma}_{B{\omega}}(A)={\sigma}(A)$\E(A), and the B-Weyl spectrum ${\sigma}_{B{\omega}}(A)$ of A satisfies the spectral mapping theorem. In [51], H. Weyl proved that weyl's theorem holds for hermitian operators. Weyl's theorem has been extended from hermitian operators to hyponormal and Toeplitz operators [12], and to several classes of operators including semi-normal operators ([9], [10]). Recently W. Y. Lee [35] showed that Weyl's theorem holds for algebraically hyponormal operators. R. Curto and Y. M. Han [14] have extended Lee's results to algebraically paranormal operators. In [19] the authors showed that Weyl's theorem holds for algebraically p-hyponormal operators. As Berkani has shown in [5], if the generalized Weyl's theorem holds for A, then so does Weyl's theorem. In this paper all the above results are generalized by proving that generalizedWeyl's theorem holds for the case where A is an algebraically ($p,\;k$)-quasihyponormal or an algebarically paranormal operator which includes all the above mentioned operators.

  • PDF

GENERALIZED BROWDER, WEYL SPECTRA AND THE POLAROID PROPERTY UNDER COMPACT PERTURBATIONS

  • Duggal, Bhaggy P.;Kim, In Hyoun
    • 대한수학회지
    • /
    • 제54권1호
    • /
    • pp.281-302
    • /
    • 2017
  • For a Banach space operator $A{\in}B(\mathcal{X})$, let ${\sigma}(A)$, ${\sigma}_a(A)$, ${\sigma}_w(A)$ and ${\sigma}_{aw}(A)$ denote, respectively, its spectrum, approximate point spectrum, Weyl spectrum and approximate Weyl spectrum. The operator A is polaroid (resp., left polaroid), if the points $iso{\sigma}(A)$ (resp., $iso{\sigma}_a(A)$) are poles (resp., left poles) of the resolvent of A. Perturbation by compact operators preserves neither SVEP, the single-valued extension property, nor the polaroid or left polaroid properties. Given an $A{\in}B(\mathcal{X})$, we prove that a sufficient condition for: (i) A+K to have SVEP on the complement of ${\sigma}_w(A)$ (resp., ${\sigma}_{aw}(A)$) for every compact operator $K{\in}B(\mathcal{X})$ is that ${\sigma}_w(A)$ (resp., ${\sigma}_{aw}(A)$) has no holes; (ii) A + K to be polaroid (resp., left polaroid) for every compact operator $K{\in}B(\mathcal{X})$ is that iso${\sigma}_w(A)$ = ∅ (resp., $iso{\sigma}_{aw}(A)$ = ∅). It is seen that these conditions are also necessary in the case in which the Banach space $\mathcal{X}$ is a Hilbert space.

ON SURJECTIVITY OF m-ACCRETIVE OPERATORS IN BANACH SPACES

  • Han, Song-Ho;Kim, Myeong-Hwan;Park, Jong An.
    • 대한수학회보
    • /
    • 제26권2호
    • /
    • pp.203-209
    • /
    • 1989
  • Recently many authors [2,3,5,6] proved the existence of zeros of accretive operators and estimated the range of m-accretive operators or compact perturbations of m-accretive operators more sharply. Their results could be obtained from differential equations in Banach spaces or iteration methods or Leray-Schauder degree theory. On the other hand Kirk and Schonberg [9] used the domain invariance theorem of Deimling [3] to prove some general minimum principles for continuous accretive operators. Kirk and Schonberg [10] also obtained the range of m-accretive operators (multi-valued and without any continuity assumption) and the implications of an equivalent boundary conditions. Their fundamental tool of proofs is based on a precise analysis of the orbit of resolvents of m-accretive operator at a specified point in its domain. In this paper we obtain a sufficient condition for m-accretive operators to have a zero. From this we derive Theorem 1 of Kirk and Schonberg [10] and some results of Morales [12, 13] and Torrejon[15]. And we further generalize Theorem 5 of Browder [1] by using Theorem 3 of Kirk and Schonberg [10].

  • PDF

GENERALIZED WEYL'S THEOREM FOR ALGEBRAICALLY $k$-QUASI-PARANORMAL OPERATORS

  • Senthilkumar, D.;Naik, P. Maheswari;Sivakumar, N.
    • 충청수학회지
    • /
    • 제25권4호
    • /
    • pp.655-668
    • /
    • 2012
  • An operator $T\;{\varepsilon}\;B(\mathcal{H})$ is said to be $k$-quasi-paranormal operator if $||T^{k+1}x||^2\;{\leq}\;||T^{k+2}x||\;||T^kx||$ for every $x\;{\epsilon}\;\mathcal{H}$, $k$ is a natural number. This class of operators contains the class of paranormal operators and the class of quasi - class A operators. In this paper, using the operator matrix representation of $k$-quasi-paranormal operators which is related to the paranormal operators, we show that every algebraically $k$-quasi-paranormal operator has Bishop's property ($\beta$), which is an extension of the result proved for paranormal operators in [32]. Also we prove that (i) generalized Weyl's theorem holds for $f(T)$ for every $f\;{\epsilon}\;H({\sigma}(T))$; (ii) generalized a - Browder's theorem holds for $f(S)$ for every $S\;{\prec}\;T$ and $f\;{\epsilon}\;H({\sigma}(S))$; (iii) the spectral mapping theorem holds for the B - Weyl spectrum of T.

WEYL SPECTRUM OF THE PRODUCTS OF OPERATORS

  • Cao, Xiaohong
    • 대한수학회지
    • /
    • 제45권3호
    • /
    • pp.771-780
    • /
    • 2008
  • Let $M_C=\(\array{A&C\\0&B}\)$ be a $2{\times}2$ upper triangular operator matrix acting on the Hilbert space $H{\bigoplus}K\;and\;let\;{\sigma}_w(\cdot)$ denote the Weyl spectrum. We give the necessary and sufficient conditions for operators A and B which ${\sigma}_w\(\array{A&C\\0&B}\)={\sigma}_w\(\array{A&C\\0&B}\)\;or\;{\sigma}_w\(\array{A&C\\0&B}\)={\sigma}_w(A){\cup}{\sigma}_w(B)$ holds for every $C{\in}B(K,\;H)$. We also study the Weyl's theorem for operator matrices.