• Title/Summary/Keyword: a three-dimensional

Search Result 12,888, Processing Time 0.043 seconds

A Performance analysis of robot tele-operator using 3D Images (입체영상(立體映像)을 이용한 원격Robot 조작자의 수행도 분석)

  • Jo, Am;Jeon, Yong-Ung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.127-140
    • /
    • 1999
  • In order to apply three-dimensional images to industries, the possibility of realizing three-dimensional images should be ensured and when operating a task using three-dimensional images, the intention of the observer and the result of operation should be precisely related. The aim of this paper is to investigate the task performance of a human operator during operating a robot manipulator using three-dimensional and two-dimensional image displays. From the result of this research, it was found that the accuracy of robot operation in the case of using three-dimensional displays is much higher than in the case of using two-dimensional displays and the adapting time to the operating task using three-dimensional displays is shorter than that using two-dimensional displays. From such results, we concluded that the application of three-dimensional displays, which can closely reflect real environment, to industries is desirable.

  • PDF

Research on a Multi-level Space Vector Modulation Strategy in Non-orthogonal Three-dimensional Coordinate Systems

  • Zhang, Chuan-Jin;Wei, Rui-Peng;Tang, Yi;Wang, Ke
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1160-1172
    • /
    • 2017
  • A novel space vector modulation strategy in the non-orthogonal three-dimensional coordinate system for multi-level three-phase four-wire inverters is proposed in this paper. This new non-orthogonal three-dimensional space vector modulation converts original trigonometric functions in the orthogonal three-dimensional space coordinate into simple algebraic operations, which greatly reduces the algorithm complexity of three-dimensional space vector modulation and preserves the independent control of the zero-sequence component. Experimental results have verified the correctness and effectiveness of the proposed three-dimensional space vector modulation in the new non-orthogonal three-dimensional coordinate system.

Role of the Observation Planning in Three-dimensional Environment for Autonomous Reconstruction

  • Moon, Jung-Hyun;You, Bum-Jae;Kim, Hag-Bae;Oh, Sang-Rok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.37-42
    • /
    • 2005
  • This paper presents an autonomous system for reconstruction of three-dimensional indoor environments using a mobile robot. The system is composed of a mobile robot, a three-dimensional scanning system, and a notebook computer for registration, observation planning and real-time three-dimensional data transferring. Three-dimensional scanning system obtains three-dimensional environmental data and performs filtering of dynamic objects. Then, it registers multiple three-dimensional scans into one coordinate system and performs observation planning which finds the next scanning position by using the layered hexahedral-map and topological-map. Then, the mobile robot moves to the next scanning position, and repeats all procedures until there is no scanning tree in topological-map. In concurrence with data scanning, three-dimensional data can be transferred through wireless-LAN in real-time. This system is experimented successfully by using a mobile robot named KARA.

  • PDF

Three Dimensional Imaging Using Wavelets

  • Lee, Kyeong-Eun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.3
    • /
    • pp.695-706
    • /
    • 2004
  • The use of wavelets in three-dimensional imaging is reviewed with an example. The insufficiencies of direct two-dimensional processing is showed as a major motivating factor behind using wavelets for three-dimensional imaging. Different wavelet algorithms are used, and these are compared with the direct two-dimensional approach as well as with each other.

  • PDF

SHAPE OPTIMIZATION OF COMPRESSOR BLADES USING 3D NAVIER-STOKES FLOW PHYSICS

  • Lee K. D.;Chung J.;Shim J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.1-8
    • /
    • 2001
  • A CFD-based design method for transonic axial compressor blades was developed based on three-dimensional Navier-Stokes flow physics. The method employs a sectional three-dimensional (S3D) analysis concept where the three-dimensional flow analysis is performed on the grid plane of a span station with spanwise flux components held fixed. The S3D analysis produced flow solutions nearly identical to those of three-dimensional analysis, regardless of the initialization of the flow field. The sectional design based on the S3D analysis can include three-dimensional effects of compressor flows and thus overcome the deficiencies associated with the use of quasi-three-dimensional flow physics in conventional sectional design. The S3D design was first used in the inverse triode to find the geometry that produces a specified target pressure distribution. The method was also applied to optimize the adiabatic efficiency of the blade sections of Rotor 37. A new blade was constructed with the optimized sectional geometries at several span stations and its aerodynamic performance was evaluated with three-dimensional analyses.

  • PDF

ON CONTACT THREE CR SUBMANIFOLDS OF A (4m + 3)-DIMENSIONAL UNIT SPHERE

  • Kwon, Jung-Hwan;Pak, Jin--Suk
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.3
    • /
    • pp.561-577
    • /
    • 1998
  • We study (n+3)-dimensional contact three CR submanifolds of a Riemannian manifold with Sasakian three structure and investigate some characterizations of $S^{4r+3}$(a) $\times$ $S^{4s+3}$(b) ($a^2$$b^2$=1, 4(r + s) = n - 3) as a contact three CR sub manifold of a (4m+3)-dimensional unit sphere.

  • PDF

Applications of Three-Dimensional Measurement System for Shape Analysis -Focused on WBS and RapidForm 2004- (입체 형상 분석을 위한 3차원 계측시스템의 활용 -WBS와 RapidForm 2004를 중심으로-)

  • Lee Myung-Hee;Jung Hee-Kyeong
    • Journal of the Korean Society of Costume
    • /
    • v.55 no.5 s.95
    • /
    • pp.55-64
    • /
    • 2005
  • The concern with three-dimensional measurement has been growing in recent years. And over the last few years, several studies have been made on three-dimensional measurement. Some of the studies using a three-dimensional measurement have focused on type of form of human body and evaluation of fitness. But there has been no study about applications of three-dimensional measurement system for shape analysis. So, the purpose of this study was to investigate about application of three-dimensional mea-surement system lot shape analysis. The instrument and tools for three-dimensional measurement was Whole Body 3D scanner(model name: Exyma-WBS2H). Analysis program used in experiment is Rapid Form 2004 PPI (INUS technology, Int, Korea). The following results were obtained; 1. The point data using three-dimensional measurement system built 3D model. 2. The three-dimensional data were used to analyze length and curvature of shape. 3. The shape using three-dimensional measurement system could be used in variety field.

Performance Analysis of the Rectangular Fin (사각 휜에 대한 성능해석)

  • Gang, Hyeong-Seok;Yun, Se-Chang;Lee, Seong-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Performance of a rectangular fin is investigated by a three dimensional analytical method. Heat loss and the temperature obtained from the three dimensional analysis are compared with those calculated from a two dimensional analysis. Fin effectiveness, fin resistance and fin efficiency for the rectangular fin are presented as a function of non-dimensional fin length and fin width. The results are obtained in the following : (1) heat loss calculated from the two dimensional analysis is the same as that obtained from the three dimensional analysis with adiabatic boundary condition in z-direction, (2) heat loss obtained from the two dimensional analysis approaches the value for the three dimensional analysis as the non-dimensional fin width becomes large, (3) fin effectiveness increases as non-dimensional fin length increases and non-dimensional fin width decreases, and vice versa for fin efficiency.

Block Deformation Analysis Using Three-dimensional Discontinuous Deformation Analysis(DDA) (삼차원 불연속 변형 해석(DDA)을 이용한 블록거동해석)

  • 장현익;이정인
    • Tunnel and Underground Space
    • /
    • v.12 no.3
    • /
    • pp.158-170
    • /
    • 2002
  • Since the development of Discontinuous Deformation Analysis (DDA) by Shi (1984), there has been much improvement in the theory and programs. These, however, are all based on the assumption of a two-dimensional plane strain or plane stress state; and because a rock block system is a three-dimensional problem, a two-dimensional analysis has limited application. So a three-dimensional analysis is required in the design of rock slopes and underground spaces where three-dimensional discontinuities dominate stability. In this study three-dimensional DDA program is developed using the Shi's two-dimensional theory and program, and the two cases of three-dimensional block are analysed. The program is applied to one sliding-face blocks and wedge sliding and it gives the good results comparing to the exact solution. Multi-block cases will be analysed for many other application soon.

ON PAIRWISE GAUSSIAN BASES AND LLL ALGORITHM FOR THREE DIMENSIONAL LATTICES

  • Kim, Kitae;Lee, Hyang-Sook;Lim, Seongan;Park, Jeongeun;Yie, Ikkwon
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1047-1065
    • /
    • 2022
  • For two dimensional lattices, a Gaussian basis achieves all two successive minima. For dimension larger than two, constructing a pairwise Gaussian basis is useful to compute short vectors of the lattice. For three dimensional lattices, Semaev showed that one can convert a pairwise Gaussian basis to a basis achieving all three successive minima by one simple reduction. A pairwise Gaussian basis can be obtained from a given basis by executing Gauss algorithm for each pair of basis vectors repeatedly until it returns a pairwise Gaussian basis. In this article, we prove a necessary and sufficient condition for a pairwise Gaussian basis to achieve the first k successive minima for three dimensional lattices for each k ∈ {1, 2, 3} by modifying Semaev's condition. Our condition directly checks whether a pairwise Gaussian basis contains the first k shortest independent vectors for three dimensional lattices. LLL is the most basic lattice basis reduction algorithm and we study how to use LLL to compute a pairwise Gaussian basis. For δ ≥ 0.9, we prove that LLL(δ) with an additional simple reduction turns any basis for a three dimensional lattice into a pairwise SV-reduced basis. By using this, we convert an LLL reduced basis to a pairwise Gaussian basis in a few simple reductions. Our result suggests that the LLL algorithm is quite effective to compute a basis with all three successive minima for three dimensional lattices.