• 제목/요약/키워드: a sliding control

검색결과 1,544건 처리시간 0.03초

시간지연 시스템에서의 불확실성 추정을 갖는 슬라이딩 모드제어 (Sliding Mode Control with Uncertainty Adaptation for Uncertain Input-Delay Systems)

  • 노영훈;오준호
    • 제어로봇시스템학회논문지
    • /
    • 제6권11호
    • /
    • pp.963-967
    • /
    • 2000
  • This paper deals with a sliding mode control with uncertainty adaptation for the robust stabilization of input-delay systems with unknown uncertainties. A sliding surface including a state predictor is employed to compensate for the effect of the input delay. The proposed method does not need a priori knowledge of upper bounds on the norm of uncertainties, but estimates those upper bounds by adaptation laws based on the sliding surface. Then, a robust control law with the uncertainty adaptation is derived to ensure the existence of the sliding mode. A numerical example is given to illustrate the design procedure.

  • PDF

무인 수중운동체의 경로추적기와 심도제어기 설계 연구 (A study on the design of a path tracker and depth controller for autonomous underwater vehicles)

  • 양승윤;이만형
    • 제어로봇시스템학회논문지
    • /
    • 제4권1호
    • /
    • pp.45-55
    • /
    • 1998
  • In this paper, a robust path tracker and depth controller of Autonomous Underwater Vehicle based on sliding mode control is presented. We have also designed augmented equivalent control inputs by analyzing the sliding mode with the reaching mode. This can enhance the reaching rate, and improve chattering problems, that is, noise caused by the control plane actuator of the vehicle, which is one of the problems that occur when sliding mode control is used. Also to resolve the steady state error generated in the path tracker under current effect, a modified sliding plane is constructed. Also a redesigned sliding plane and control input using transformation matrix is proposed to do easy design of MIMO depth controller. For state variables that cannot be measured directly, reduced order sliding mode control is used to design an observer. The performance of designed path tracker and depth controller is investigated by computer simulation. The results show that the proposed control system has robust performance to parameter variation, modelling error and disturbance.

  • PDF

Scanner System을 위한 Discrete-Time Sliding Mode Controller 설계 (Discrete-Time Sliding Mode Controller Design for Scanner system)

  • 이충우;정정주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.172-172
    • /
    • 2000
  • In this paper, we propose a new discrete-time sliding mode controller for reference tracking. Stability of tracking error is analyzed. Design method of sliding surface for tracking control is proposed. Simulation and experimental results are included to show the effectiveness of the proposed method.

  • PDF

슬라이딩 섹터를 갖은 가변구조제어를 이용한 비선형시스템의 추적제어 (Tracking Control of Nonlinear System using the Variable Structure Control with Sliding Sector)

  • 한종길;손영수
    • 한국전자통신학회논문지
    • /
    • 제2권2호
    • /
    • pp.67-74
    • /
    • 2007
  • 채터링 현상은 VSS의 주요한 약점이며 이 문제를 극복하기위하여 많은 연구들이 발표되었다. 슬라이딩 섹터 이론이 최근에 발표되었으며, 섹터 안에서 제어입력 없이 상태의 놈이 감소하고 상태가 섹터 안에 있는 동안에 상태의 놈은 영으로 수렴한다. 슬라이딩 섹터 이론은 기본적인 연구단계에 있으며 선형시스템에 대하여 연구되어있다. 본 논문에서는 슬라이딩 섹터를 이용하여 불안정한 비선형시스템의 추적제어하는 새로운 방식을 제안하며 슬라이딩 섹터에 리아프노프 함수를 이용하여 안정도를 분석한다. 역진자 시스템에 컴퓨터 시뮬레이션을 통하여 제안한 슬라이딩 섹터 제어가 채터링을 줄일 수 있는 것을 확인한다.

  • PDF

레이저 마킹 시스템의 이산시간 슬라이딩 모드 제어기 설계 (Design of a Discrete Time Sliding Mode Controller for Laser Marking System)

  • 이충우;채수경;최재모;정정주
    • 제어로봇시스템학회논문지
    • /
    • 제10권4호
    • /
    • pp.304-311
    • /
    • 2004
  • In this paper we present a technique of discrete-time sliding mode controller design for assigning eigenvalues of sliding mode and determining a convergence rate to sliding surface. First the sliding mode coefficient is designed via Ackermann s formula. Then a linear controller is designed to enforce sliding mode such that the resulting closed loop yields the desired eigenvalues. As we use a linear control instead of nonlinear control, chattering is nearly eliminated. Simulation and experimental results are included to show the effectiveness of the proposed method for Laser Marking System.

비선형 계통에 대한 적응 퍼지 슬라이딩 모드 제어 (Adaptive fuzzy sliding mode control for nonlinear systems)

  • 서삼준;서호준;김동식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.684-688
    • /
    • 1996
  • In this paper, to overcome drawbacks of variable structure control system a self-tuning fuzzy sliding mode control algorithm using gradient descent method is proposed. The proposed method has the characteristics which are viewed in conventional VSC, e.g. insensitivity to a class of disturbance, parameter variations and uncertainties in the sliding mode. To demonstrate its performance, the proposed control algorithm is applied to a one-degree of freedom robot arm. The results show that both alleviation of chattering and performance are achieved.

  • PDF

로봇 메니플레이터의 레귤레이션 제어를 위한 개선된 적분 슬라이딩 모드 제어기 (An Improved Integral Sliding Mode Controller for Regulation Control of Robot Manipulators)

  • 이정훈
    • 전기학회논문지
    • /
    • 제67권1호
    • /
    • pp.103-113
    • /
    • 2018
  • In this paper, an improved integral variable structure regulation controller is designed by using a special integral sliding surface and a disturbance observer for the improved regulation control of highly nonlinear rigid robot manipulators with prescribed output performance. The sliding surface having the integral state with a special initial condition is employed in this paper to exactly predetermine the ideal sliding trajectory from a given initial condition to the desired reference without any reaching phase. And a continuous sliding mode input using the disturbance observer is also introduced in order to effectively follow the predetermined sliding trajectory within the prescribed accuracy without large computation burden. The performance of the prescribed tracking accuracy to the predetermined sliding trajectory is clearly investigated in detail through the two theorems, together with the closed loop stability. The design of the proposed regulation controller is separated into the performance design and robustness design in each independent link. The usefulness of the algorithm has been demonstrated through simulation studies on the regulation control of a two-link robot under parameter uncertainties and payload variations.

군집주행의 종방향 제어를 위한 비선형 제어기 성능 비교 평가 (Comparative Performance Evaluation of Nonlinear Controllers for Longitudinal Control in a Vehicle Platooning)

  • 전성민;최재원;김영호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.218-218
    • /
    • 2000
  • Advanced Vehicle Control Systems(AVCS) is one of the key elements in Intelligent Transportation Systems(ITS). This paper considers the problem of longitudinal control in vehicle platoon on a straight lane of a highway. In a very simplified situation, longitudinal vehicle dynamics contains many nonlinear elements. The nonlinear characteristics are mainly composed of an engine, a torque converter, and a drag force. In this paper, sliding control, one of nonlinear control methods, is applied to longitudinal automated vehicle control for platooning. Output feedback linearization is also simulated for comparison with the sliding control. Simulations for comparative study for the adopted controllers such as sliding control and output feedback linearization are peformed under the same conditions. This Paper aims at clarifying the characteristics of sliding control and output feedback linearization.

  • PDF

Sliding Mode Control with Fixed Switching Frequency for Four-wire Shunt Active Filter

  • Hamoudi, Farid;Chaghi, A. Aziz;Amimeur, Hocine;Merabet, El Kheir
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권5호
    • /
    • pp.647-657
    • /
    • 2011
  • The present paper proposes a sliding mode control with fixed switching frequency for three-phase three-leg voltage source inverter based four-wire shunt active power filter. The aim is to improve phase current waveform, neutral current mitigation, and reactive power compensation in electric power distribution system. The performed sliding mode for active filter current control is formulated using elementary differential geometry. The discrete control vector is deduced from the sliding surface accessibility using the Lyapunov stability. The problem of the switching frequency is addressed by considering hysteresis comparators for the switched signals generation. Through this method, a variable hysteresis band has been established as a function of the sliding mode equivalent control and a predefined switching frequency in order to keep this band constant. The proposed control has been verified with computer simulation which showed satisfactory results.

정합조건을 만족하지 않는 선형 시스템에 대한 슬라이딩 모드 제어 (Sliding Mode Control for Linear System with Mismatched Uncertainties)

  • 성재봉;권성하;박승규;정은태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.25-25
    • /
    • 2000
  • This paper presents a design method of sliding mode control (SMC) for single input linear systems with mismatched uncertainties. We define a virtual state based on the controllable canonical form of the nominal system. And we define a sliding surface for the augmented system with a virtual state. This sliding surface makes it possible to use SMC technique with various types of controllers. In this paper, we construct a controller that combines SMC with robust controller. We design a robust controller for the system with only mismatched uncertainties using a form of linear matrix inequality (LMI). We make a virtual state from this robust control input and the states of the nominal system. And we design a sliding mode controller that stabilizes the overall closed-loop system.

  • PDF