• Title/Summary/Keyword: a fuzzy sliding mode control

Search Result 195, Processing Time 0.025 seconds

퍼지 PI 형 도달법칙을 가지는 가변 구조 제어기의 설계 (The Design of a Sliding Mode Controller with Fuzzy PI-type Reaching Law)

  • 이재호;조기원;채창현;이상재
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2001년도 하계 학술대회 논문집(KISPS SUMMER CONFERENCE 2001
    • /
    • pp.105-108
    • /
    • 2001
  • In this paper, we proposed a variable structure controller with fuzzy PI-쇼pe reaching law. we fuzzified as inputs to fuzzy system Rf(representative point's orthogonal distance(rd) to switching surface and RP's distance(r) to the origin of the 2-dimensional space whose coordinates are the error and the error rate. The increments of the coefficients $k_{p}$ and $k_{i}$, of the reaching law are calculated appropriate by the simplified Mamdanl inference. The proposed fuzzy PI-type reaching law makes it reduce the chattering and has no need to tune the PI parameters of reaching law. The effectiveness of the proposed fuzzy PI-type reaching law is shown by the simulation results of the control of a Ball-balance System.

  • PDF

Takagi-Sugeno 퍼지 제어기를 이용한 불확실성을 포함한 유도전동기의 효율 최적화 (Takagi-Sugeno Fuzzy Controller for Efficiency Optimization of Induction Motor with Model Uncertainties)

  • 이선영;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1646_1647
    • /
    • 2009
  • In this paper, Takagi-Sugeno(T-S) fuzzy controller and search method are developed for efficiency optimization of induction motors(IMs). The proposed control scheme consists of efficiency controller and adaptive backstepping controller. A search controller for which information of input of T-S fuzzy controller is included in efficiency controller that uses a direct vector controlled induction motor. A sliding mode observer is designed to estimate rotor flux and an adaptive backstepping controller is used to control of speed of IMs. Simulation results are presented to validate the proposed controller.

  • PDF

그래디언트 감소를 기반으로하는 자기구성 퍼지 제어기의 설계 및 응용 (Design and Application of Gradient-descent-based Self-organizing Fuzzy Logic Controller)

  • 소상호;박동조
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.191-196
    • /
    • 1998
  • A new Fuzzy Logic Controller(FLC) called a Gradient-Descent Based Self-Organizing Controller is presented. The Self-Organizing Controller(SOC) has two inputs such as error and change of error, and updates control rules with monitoring a performance measure. There are many works in the SOC which concentrate on the self-organizing ability in control rule base, but have a few research on the performance measure which is akin to sliding mode control. With this procedure, we can get a robust performance measure on the SOC. To verify the perfomance of proposed controller, we have performed for the cart-pole system which is one of the well-known benchmark problem in the control literature.

  • PDF

Control of Robot Manipulators Using Time-Delay Estimation and Fuzzy Logic Systems

  • Bae, Hyo-Jeong;Jin, Maolin;Suh, Jinho;Lee, Jun Young;Chang, Pyung-Hun;Ahn, Doo-sung
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1271-1279
    • /
    • 2017
  • A highly accurate model-free controller is proposed for trajectory tracking control of robot manipulators. The proposed controller incorporates time-delay estimation (TDE) to estimate and cancel continuous nonlinearities of robot dynamics, and exploits fuzzy logic systems to suppress the effect of the TDE error, which is due to discontinuous nonlinearities such as friction. To this end, integral sliding mode is defined using desired error dynamics, and a Mamdani-type fuzzy inference system is constructed. As a result, the proposed controller achieves the desired error dynamics well. Implementation of the proposed controller is easy because the design of the controller is intuitive and straightforward, and calculations of the complex robot dynamics are not required. The tracking performance of the proposed controller is verified experimentally using a 3-degree of freedom PUMA-type robot manipulator.

Design of a SMC-type FLC and Its Equivalence

  • 최병재;곽성우;김병국
    • 한국지능시스템학회논문지
    • /
    • 제7권5호
    • /
    • pp.14-20
    • /
    • 1997
  • This paper proposes a new design method for the SMC-type FLC and shows that a SMC-type LFC is an extension of the SMC with BL. The conventional SMC-type FLC uses error and change-of-error as inputs of the FLC and generates the absolute value of a switching magnitude. Then, the fuzzy rule table is constructed on a two-dimensional space of the phase plane and has commonly the skew symmetric property. In this paper, we introduce a new variable, signed distance, from the skew symmetric property of the rule table. And thd variable becomes only a fuzzy variable that is used to generate the control input of a SMC-type FLC. that is, we design a new SMC-type FLC that uses a signed distance and a control input as the variables representing the contents of the rule-antecedent and the rule-con-sequent, respectively. Then the number of total rules is reduced and the control performance is almost the same as that of the conventional SMC-type FLC. Additionally, we derive the control law of the ordinary SMC with BL from a new SMC-type FLC. Namely, we show that a FLC is an extension of the SMC with BL.

  • PDF

Design of FLC based on the concept of VSC for Home VCR Drum Motor

  • Park, Tae-Hong;Lee, Sang-Lak;Park, Gwi-Tae;Lee, Kee-Samg
    • 한국지능시스템학회논문지
    • /
    • 제5권1호
    • /
    • pp.25-32
    • /
    • 1995
  • In this paper, the FLVSC (Fuzzy Logic Variable Structure controller), of which control rules are extracted from the concepts of the VSC(Variable Structure control) is proposed and diesgned for drum motor(BLDC motor) in home VCR. The FLC (Fuzzy Logic Controller) based on linguistic rules has the advantages of not needing of some exact mathermatical model for plant to be controlled. The proposed method has the characteristics which are viewed in conventional VSC, e.g. insensitivity to a class of distrubances, parameter variations and uncertainites in a sliding mode. In addition, the method has the properties of the FLC-noise rejection capability etc. The computer simulation and experiment using DSP(TMS320C30) have been carried out for the servo control of VCR drum motor to show the usefulness of the proposed method.

  • PDF

슬라이딩 모드를 이용한 HYBRID PID형 퍼지제어기 (HYBRID PID FLC using sliding Mode)

  • 문준호;조종훈;오광현;김태언;남문현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.992-994
    • /
    • 1995
  • FLC has a good performance for complication system or unknown model by using human linguistic method but many part control design are based on expert knowledge or trial-error method and it is difficult to prove stability and robustness of controller. In this paper we improve this problem by setting fuzzy rules by dividing phase plane of error and rate of error change by switching surface. We can guarantee the stability in nonlinear system, and also in fuzzy PID type controller the complexity of controller design is increased by increasing the number of input variables and defining more range of operation if we want performance of more specific rules, thus we need to fine the method to decrease the number of control rules used in FLC design. In this paper the algorithm is validated by simulation using conventional FLC and proposed method.

  • PDF

Novel ANFIS based SMC with Fractional Order PID Controller for Non Linear Interacting Coupled Spherical Tank System for Level Process

  • Jegatheesh A;Agees Kumar C
    • International Journal of Computer Science & Network Security
    • /
    • 제24권2호
    • /
    • pp.169-177
    • /
    • 2024
  • Interacting Spherical tank has maximum storage capacity is broadly utilized in industries because of its high storage capacity. This two tank level system has the nonlinear characteristics due to its varying surface area of cross section of tank. The challenging tasks in industries is to manage the flow rate of liquid. This proposed work plays a major role in controlling the liquid level in avoidance of time delay and error. Several researchers studied and investigated about reducing the nonlinearity problem and their approaches do not provide better result. Different types of controllers with various techniques are implemented by the proposed system. Intelligent Adaptive Neuro Fuzzy Inference System (ANFIS) based Sliding Mode Controller (SMC) with Fractional order PID controller is a novel technique which is developed for a liquid level control in a interacting spherical tank system to avoid the external disturbances perform better result in terms of rise time, settling time and overshoot reduction. The performance of the proposed system is obtained by analyzing the simulation result obtained from the controller. The simulation results are obtained with the help of FOMCON toolbox with MATLAB 2018. Finally, the performance of the conventional controller (FOPID, PID-SMC) and proposed ANFIS based SMC-FOPID controllers are compared and analyzed the performance indices.

Observer-Based FL-SMC Active Damping for Back-to-Back PWM Converter with LCL Grid Filter

  • Gwon, Jin-Su;Lee, Hansoo;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권3호
    • /
    • pp.200-207
    • /
    • 2015
  • This paper proposes an active damping control method for a grid-side converter that has an LCL grid filter in the back-to-back converter. To remove the resonant frequency components produced by the LCL filter, it is necessary to measure the grid current. To do this, sensors must be added. However, it is not necessary to add sensors because the grid current is estimated by designing a suboptimal observer. In order to remove the nonlinearity and to gain fast response of control, both feedback linearization and sliding mode control are applied. The proposed method is verified through a simulation.

PDC와 적분 슬라이딩 모드 제어를 결합한 이동 로봇의 강인 궤도 추적 제어 (Robust Trajectory Tracking Control of a Mobile Robot Combining PDC and Integral Sliding Mode Control)

  • 박민수;박승규;안호균;곽군평;윤태성
    • 한국정보통신학회논문지
    • /
    • 제19권7호
    • /
    • pp.1694-1704
    • /
    • 2015
  • 본 논문에서는 병렬 분산 보상 (PDC) 제어와 적분 슬라이딩 모드 제어 (ISMC)를 결합하여 바퀴형 이동 로봇의 강인한 궤도 추적 제어 방법을 새롭게 제안한다. PDC 제어 방법은 다른 비선형 제어 방법에 비해 비교적 간단하고 사용이 편리하다. 그리고 ISMC는 상태 변수들을 원하는 공칭 동특성을 갖는 슬라이딩 평면에 배치함으로써 초기 순간부터 모델 불확실성 및 외란에 대해 강인하고 안정적인 제어 특성을 갖게 할 수 있다. 그러므로 제안된 PDC+ISMC 궤도 추적 제어 방법은 외란에도 불구하고 강인한 궤도 추적 제어 성능을 보여준다. 제안된 궤도 추적 방법에 대해 시뮬레이션을 통하여 외란이 있는 경우의 궤도 추적 성능을 확인하였다. 제안된 방법은 외란이 증가하더라도 외란이 없을 때의 PDC 제어 방법에 의한 궤도 추적 성능을 유지하였다. 그러나 PDC 궤도 추적 방법은 외란의 크기가 증가하면 제안된 방법과는 달리 궤도 추적 오차가 크게 증가함을 알 수 있었다.