• Title/Summary/Keyword: a SVD decomposition

Search Result 197, Processing Time 0.028 seconds

Application SVD-Least Square Algorithm for solving astronomical ship position basing on circle of equal altitude equation

  • Nguyen, Van Suong;Im, Namkyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.10a
    • /
    • pp.130-132
    • /
    • 2013
  • This paper presents an improvement for calculating method of astronomical vessel position with circle of equal altitude equation based on using a virtual object in sun and two stars observation. In addition, to enhance the accuracy of ship position achieved from solving linear matrix system, and surmount the disadvantages on rank deficient matrices situation, the authors used singular value decomposition (SVD) in least square method instead of normal equation and QR decomposition, so, the solution of matrix system will be available in all situation. As proposal algorithm, astronomical ship position will give more accuracy than previous methods.

  • PDF

3-D shape and motion recovery using SVD from image sequence (동영상으로부터 3차원 물체의 모양과 움직임 복원)

  • 정병오;김병곤;고한석
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.3
    • /
    • pp.176-184
    • /
    • 1998
  • We present a sequential factorization method using singular value decomposition (SVD) for recovering both the three-dimensional shape of an object and the motion of camera from a sequence of images. We employ paraperpective projection [6] for camera model to handle significant translational motion toward the camera or across the image. The proposed mthod not only quickly gives robust and accurate results, but also provides results at each frame becauseit is a sequential method. These properties make our method practically applicable to real time applications. Considerable research has been devoted to the problem of recovering motion and shape of object from image [2] [3] [4] [5] [6] [7] [8] [9]. Among many different approaches, we adopt a factorization method using SVD because of its robustness and computational efficiency. The factorization method based on batch-type computation, originally proposed by Tomasi and Kanade [1] proposed the feature trajectory information using singular value decomposition (SVD). Morita and Kanade [10] have extenened [1] to asequential type solution. However, Both methods used an orthographic projection and they cannot be applied to image sequences containing significant translational motion toward the camera or across the image. Poleman and Kanade [11] have developed a batch-type factorization method using paraperspective camera model is a sueful technique, the method cannot be employed for real-time applications because it is based on batch-type computation. This work presents a sequential factorization methodusing SVD for paraperspective projection. Initial experimental results show that the performance of our method is almost equivalent to that of [11] although it is sequential.

  • PDF

SNR Scalable Coding of 3-D Mesh Sequences Based on Singular Value Decomposition (특이값 분해에 기반한 3차원 메쉬 동영상의 SNR 계층 부호화)

  • Heu, Jun-Hee;Kim, Chang-Su;Lee, Sang-Uk
    • Journal of Broadcast Engineering
    • /
    • v.13 no.3
    • /
    • pp.289-298
    • /
    • 2008
  • We propose an SNR-scalable coding algorithm for three-dimensional mesh sequences based on singular value decomposition (SVD). SVD achieves a coding gain by representing a mesh sequence with a small number of basis vectors and singular values. First, we introduce a bit plane coding scheme and derive a quantitative relationship between each bit plane and the reconstructed image quality. Using the relationship, we develop a rate-distortion (RD) optimized coding algorithm. Moreover, we propose prediction techniques to exploit the spatio-temporal correlations in real mesh sequences. Simulation results demonstrate that the proposed algorithm provides significantly better RD performance than conventional SVD coders.

Application to the design of reduced-order robust MPC and MIMO identification

  • Lee, Kwang-Soon;Kim, Sang-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.313-316
    • /
    • 1997
  • Two different issues, design of reduced-order robust model predictive control and input signal design for identification of a MIMO system, are addressed and design techniques based on singular value decomposition(SVD) of the pulse response circulant matrix(PRCM) are proposed. For this, we investigate the properties of the PRCM, which is a periodic approximation of a linear discrete-time system, and show its SVD represents the directional as well as the frequency decomposition of the system. Usefulness of the PRCM and effectiveness of the proposed design techniques are demonstrated through numerical examples.

  • PDF

A damage localization method based on the singular value decomposition (SVD) for plates

  • Yang, Zhi-Bo;Yu, Jin-Tao;Tian, Shao-Hua;Chen, Xue-Feng;Xu, Guan-Ji
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.621-630
    • /
    • 2018
  • Boundary effect and the noise robustness are the two crucial aspects which affect the effectiveness of the damage localization based on the mode shape measurements. To overcome the boundary effect problem and enhance the noise robustness in damage detection, a simple damage localization method is proposed based on the Singular Value Decomposition (SVD) for the mode shape of composite plates. In the proposed method, the boundary effect problem is addressed by the decomposition and reconstruction of mode shape, and the noise robustness in enhanced by the noise filtering during the decomposition and reconstruction process. Numerical validations are performed on plate-like structures for various damage and boundary scenarios. Validations show that the proposed method is accurate and effective in the damage detection for the two-dimensional structures.

Spatial Multiuser Access for Reverse Link of Multiuser MIMO Systems

  • Shin, Oh-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10A
    • /
    • pp.980-986
    • /
    • 2008
  • Spatial multiuser access is investigated for the reverse link of multiuser multiple-input multiple-output (MIMO) systems. In particular, we consider two alternative a aches to spatial multiuser access that adopt the same detection algorithm at the base station: one is a closed-loop approach based on singular value decomposition (SVD) of the channel matrix, whereas the other is an open-loop approach based in space-time block coding (STBC). We develop multiuser detection algorithms for these two spatial multiuser access schemes based on the minimum mean square error (MMSE) criterion. Then, we compare the bit error rate (BER) performance of the two schemes and a single-user MIMO scheme. Interestingly, it is found that the STBC approach can provide much better BER performance than the SVD approach as well as than a single-user MIMO scheme.

Recommender Systems using SVD with Social Network Information (사회연결망정보를 고려하는 SVD 기반 추천시스템)

  • Kim, Min-Gun;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.1-18
    • /
    • 2016
  • Collaborative Filtering (CF) predicts the focal user's preference for particular item based on user's preference rating data and recommends items for the similar users by using them. It is a popular technique for the personalization in e-commerce to reduce information overload. However, it has some limitations including sparsity and scalability problems. In this paper, we use a method to integrate social network information into collaborative filtering in order to mitigate the sparsity and scalability problems which are major limitations of typical collaborative filtering and reflect the user's qualitative and emotional information in recommendation process. In this paper, we use a novel recommendation algorithm which is integrated with collaborative filtering by using Social SVD++ algorithm which considers social network information in SVD++, an extension algorithm that can reflect implicit information in singular value decomposition (SVD). In particular, this study will evaluate the performance of the model by reflecting the real-world user's social network information in the recommendation process.

3D Model Construction from Image Scanning without Iteration or SVD (2차원 영상 템플릿으로부터 3차원 모델 템플릿 형성 - SVD가 필요 없는 선형 방법)

  • Han, Youngmo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.165-170
    • /
    • 2013
  • When we build up a 3D model from the given 2D images, linear algorithms are often used to reduce computational cost or for initialization of nonlinear algorithms. However, contemporary linear algorithms have apparently linear structures, but virtually they are implemented using SVD. The SVD is also implemented using numerical analysis algorithms that need initialization. Moreover, solutions using SVD are more difficult to analyze than closed-form solutions. To avoid from such inconvenient numerical analysis algorithms of the contemporary methods and for convenient analysis of solutions, this paper proposes a convenient linear method that produces a closed-form solution.

Identifying Top K Persuaders Using Singular Value Decomposition

  • Min, Yun-Hong;Chung, Ye-Rim
    • Journal of Distribution Science
    • /
    • v.14 no.9
    • /
    • pp.25-29
    • /
    • 2016
  • Purpose - Finding top K persuaders in consumer network is an important problem in marketing. Recently, a new method of computing persuasion scores, interpreted as fixed point or stable distribution for given persuasion probabilities, was proposed. Top K persuaders are chosen according to the computed scores. This research proposed a new definition of persuasion scores relaxing some conditions on the matrix of probabilities, and a method to identify top K persuaders based on the defined scores. Research design, data, and methodology - A new method of computing top K persuaders is computed by singular value decomposition (SVD) of the matrix which represents persuasion probabilities between entities. Results - By testing a randomly generated instance, it turns out that the proposed method is essentially different from the previous study sharing a similar idea. Conclusions - The proposed method is shown to be valid with respect to both theoretical analysis and empirical test. However, this method is limited to the category of persuasion scores relying on the matrix-form of persuasion probabilities. In addition, the strength of the method should be evaluated via additional experiments, e.g., using real instances, different benchmark methods, efficient numerical methods for SVD, and other decomposition methods such as NMF.

A Study on the Application of SVD to an Inverse Problem in a Cantilever Beam with a Non-minimum Phase (비최소 위상을 갖는 외팔보에서 SVD를 이용한 역변환 문제에 관한 연구)

  • 이상권;노경래;박진호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.9
    • /
    • pp.431-438
    • /
    • 2001
  • This paper present experimental results of source identification for non-minimum phase system. Generally, a causal linear system may be described by matrix form. The inverse problem is considered as a matrix inversion. Direct inverse method can\`t be applied for a non-minimum phase system, the reason is that the system has ill-conditioning. Therefore, in this study to execute an effective inversion, SVD inverse technique is introduced. In a Non-minimum phase system, its system matrix may be singular or near-singular and has one more very small singular values. These very small singular values have information about a phase of the system and ill-conditioning. Using this property we could solve the ill-conditioned problem of the system and then verified it for the practical system(cantilever beam). The experimental results show that SVD inverse technique works well for non-minimum phase system.

  • PDF