• Title/Summary/Keyword: a SVD decomposition

Search Result 197, Processing Time 0.022 seconds

Review on Digital Image Watermarking Based on Singular Value Decomposition

  • Wang, Chengyou;Zhang, Yunpeng;Zhou, Xiao
    • Journal of Information Processing Systems
    • /
    • v.13 no.6
    • /
    • pp.1585-1601
    • /
    • 2017
  • With the rapid development of computer technologies, a number of image modification methods have emerged, which have great impacts on the security of image information. Therefore, it is necessary to protect the integrity and authenticity of digital images, and digital watermarking technique consequently becomes a research hotspot. An effort is made to survey and analyze advancements of image watermarking algorithms based on singular value decomposition (SVD) in recent years. In the first part, an overview of watermarking techniques is presented and then mathematical theory of SVD is given. Besides, SVD watermarking model, features, and evaluation indexes are demonstrated. Various SVD-based watermarking algorithms, as well as hybrid watermarking algorithms based on SVD and other transforms for copyright protection, tamper detection, location, and recovery are reviewed in the last part.

A Simple Noise Reduction Method using SVD(Singular Value Decomposition) (SVD(Singular Value Decomposition)을 이용한 간편한 잡음 제거법)

  • Shin, Ki-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.116-122
    • /
    • 1999
  • 저차 동적계(특히 카오스계)에서 측정한 시계열의 잡음을 제거하기 위해서 SVD(Singular Value Decomposotion)을 이용한 새로운 간편하고 매우 효과적인 새로운 잡음 제거법이 소개되었다. 이 방법은 위상궤적(phase portraint)을 재구성하는데 중점을 두었으며, 궤적행렬(trajectory matrix)을 구성하는데 그 기본을 두었다. 이 궤적행렬에 SVD를 반복적으로 사용하여 신호와 잡음을 분리하였다. 이 방법은 Duffing계에서 측정한 잡음이 섞인 카오스 신호에 적용되었으며, 또한 실험에 의한 진폭변조된 신호에도 적용되었다.

  • PDF

Development of Computer Program for Solving Astronomical Ship Position Based on Circle of Equal Altitude Equation and SVD-Least Square Algorithm

  • Nguyen, Van-Suong;Im, Namkyun
    • Journal of Navigation and Port Research
    • /
    • v.38 no.2
    • /
    • pp.89-96
    • /
    • 2014
  • This paper presents an improvement for calculating method of astronomical ship position based on circle of equal altitude equation. In addition, to enhance the accuracy of ship position achieved from solving equation system, the authors used singular value decomposition (SVD) in least square method instead of normal decomposition. In maths, the SVD was proved more numerically stable than normal decomposition. Therefore, the solution of equation system will be more efficient and the result would be more accurate than previous methods. By proposal algorithm, a computer program have been developed to help the navigators in calculating directly ship position when the modern equipment has failure. Finally, some of experiments are carried out to verify effectiveness of proposed algorithm, the results show that the accuracy of ship position based on new method is better than the intercept method.

Iterative identification methods for ill-conditioned processes

  • Lee, Jietae;Cho, Wonhui;Edgar, Thomas F.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1762-1765
    • /
    • 1997
  • Some ill-conditioned processes are very sensitive to small element-wise uncertainties arising in classical element-by-element model identifications. For such processes, accurate identification of simgular values and right singular vectors are more important than theose of the elements themselves. Singular values and right singular vectors can be found by iteraive identification methods which implement the input and output transformations iteratively. Methods based on SVD decomposition, QR decomposition and LU decomposition are proposed and compared with the Kuong and Mac Gregor's method. Convergence proofs are given. These SVD and QR mehtods use normal matrices for the transformations which cannot be calculated analytically in general and so they are hoard to apply to dynamic processes, whereas the LU method used simple analyitc transformations and can be directly applied to dynamic processes.

  • PDF

Image Global K-SVD Variational Denoising Method Based on Wavelet Transform

  • Chang Wang;Wen Zhang
    • Journal of Information Processing Systems
    • /
    • v.19 no.3
    • /
    • pp.275-288
    • /
    • 2023
  • Many image edge details are easily lost in the image denoising process, and the smooth image regions are prone to produce jagged. In this paper, we propose a wavelet-based image global k- singular value decomposition variational method to remove image noise. A layer of wavelet decomposition is applied to the noisy image first. Then, the image global k-singular value decomposition (IGK-SVD) method is used to remove the random noise of low-frequency components. Furthermore, a constructed variational denoising method (VDM) removes the random noise in the high-frequency component. Finally, the denoised image is obtained by wavelet reconstruction. The experimental results show that the proposed method's peak signal-to-noise ratio (PSNR) value is higher than other methods, and its structural similarity (SSIM) value is closer to one, indicating that the proposed method can effectively suppress image noise while retaining more image edge details. The denoised image has better denoising effects.

SVD Pseudo-inverse and Application to Image Reconstruction from Projections (SVD Pseudo-inverse를 이용한 영상 재구성)

  • 심영석;김성필
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.17 no.3
    • /
    • pp.20-25
    • /
    • 1980
  • A singular value decomposition (SVD) pseudo-inversion method has been applied to the image reconstruction from projections. This approach is relatively unknown and differs from conventionally used reconstructioll methods such as the Foxier convolution and iterative techniques. In this paper, two SVD pseudo-inversion methods have been discussed for the search of optimum reconstruction and restoration, one using truncated inverse filtering, the other scalar Wiener filtering. These methods partly overcome the ill-conditioned nature of restoration problems by trading off between noise and signal quality. To test the SVD pseudo-inversion method, simulations were performed from projection data obtained from a phantom using truncated inversefiltering. The results are presented together with some limitations particular to the applications of the method to the general class of 3-D image reconstruction and restoration.

  • PDF

Cluster Feature Selection using Entropy Weighting and SVD (엔트로피 가중치 및 SVD를 이용한 군집 특징 선택)

  • Lee, Young-Seok;Lee, Soo-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.4
    • /
    • pp.248-257
    • /
    • 2002
  • Clustering is a method for grouping objects with similar properties into a same cluster. SVD(Singular Value Decomposition) is known as an efficient preprocessing method for clustering because of dimension reduction and noise elimination for a high dimensional and sparse data set like E-Commerce data set. However, it is hard to evaluate the worth of original attributes because of information loss of a converted data set by SVD. This research proposes a cluster feature selection method, called ENTROPY-SVD, to find important attributes for each cluster based on entropy weighting and SVD. Using SVD, one can take advantage of the latent structures in the association of attributes with similar objects and, using entropy weighting one can find highly dense attributes for each cluster. This paper also proposes a model-based collaborative filtering recommendation system with ENTROPY-SVD, called CFS-CF and evaluates its efficiency and utilization.

Applications of Block Pulse Response Circulant Matrix and its Singular Value Decomposition to MIMO Control and Identification

  • Lee, Kwang-Soon;Won, Wan-Gyun
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.508-514
    • /
    • 2007
  • Properties and potential applications of the block pulse response circulant matrix (PRCM) and its singular value decomposition (SVD) are investigated in relation to MIMO control and identification. The SVD of the PRCM is found to provide complete directional as well as frequency decomposition of a MIMO system in a real matrix form. Three examples were considered: design of MIMO FIR controller, design of robust reduced-order model predictive controller, and input design for MIMO identification. The examples manifested the effectiveness and usefulness of the PRCM in the design of MIMO control and identification. irculant matrix, SVD, MIMO control, identification.

BPNN Algorithm with SVD Technique for Korean Document categorization (한글문서분류에 SVD를 이용한 BPNN 알고리즘)

  • Li, Chenghua;Byun, Dong-Ryul;Park, Soon-Choel
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.2
    • /
    • pp.49-57
    • /
    • 2010
  • This paper proposes a Korean document. categorization algorithm using Back Propagation Neural Network(BPNN) with Singular Value Decomposition(SVD). BPNN makes a network through its learning process and classifies documents using the network. The main difficulty in the application of BPNN to document categorization is high dimensionality of the feature space of the input documents. SVD projects the original high dimensional vector into low dimensional vector, makes the important associative relationship between terms and constructs the semantic vector space. The categorization algorithm is tested and compared on HKIB-20000/HKIB-40075 Korean Text Categorization Test Collections. Experimental results show that BPNN algorithm with SVD achieves high effectiveness for Korean document categorization.

Design of Robust Reduced-Order Model Predictive Control using Singular Value Decomposition of Pulse Response Circulant Matrix (펄스응답 순환행렬의 특이치 분해를 이용한 강인한 차수감소 모델예측제어기의 설계)

  • 김상훈;문혜진;이광순
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.413-419
    • /
    • 1998
  • A novel order-reduction technique for model predictive control(MPC) is proposed based on the singular value decomposition(SVD) of a pulse response circulant matrix(PRCM) of a concerned system. It is first investigated that the PRCM (in the limit) contains a complete information of the frequency response of a system and its SVD decomposes the information into the respective principal directions at each frequency. This enables us to isolate the significant modes of the system and to devise the proposed order-reduction technique. Though the primary purpose of the proposed technique is to diminish the required computation in MPC, the clear frequency decomposition of the SVD of the PRCM also enables us to improve the robustness through selective excitation of frequency modes. Performance of the proposed technique is illustrated through two numerical examples.

  • PDF