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A Simple Noise Reduction Method using SVD(Singular Value Decomposition)
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1. Introduction

example, Badii et a/ [1] show that filtering processes
may introduce additional spurious Lyapunov exponents

Over the last couple of decades, chaotic systems have and may cause an increase of the fractal dimension.
been extensively studied and many remarkable results Broomhead et ol 2], however, proved that finite impulse
have been achieved in understanding very complex response (FIR) filters (finite order and non-recursive
phenomena produced by simple non-linear dynamical filter) do not have this effect. Thus, filters for chaotic
systems. The majority of these works have been based on time series must be FIR filters and applicable to non-
computer simulations. However, noise is always stationary time series because chaotic time series is
problematic in a practical situation. Noise-reduction for a generally strongly non-stationary. Recently many
time series may be considered as filtering of a noisy different noise-reduction methods for chaotic time series
signal to extract a relatively clean signal. There are many have been developed [3 - 13]. many of them based on the
methods of filter based noise-reduction, such as optimal considerations of geometrical properties by using the
filtering (Wiener filter). However, the filtered chaotic embedding methods such as the ‘method of delays’ [14]
time series may be altered fundamentally, so the inherent and SVD (Singular Value Decomposition) [15]. Some of
dynamical properties (dimensions, Lyapunov exponents, them are claimed to produce very good noise reduction.
etc.) of the original noise-free chaotic signal may not be However, these methods are usually very complicated
obtained successfully from the filtered time series. For and difficult to implement, and also require many aspects
* ISVR, University of Southampton, Southampton SO17 1BJ UK

116



A71%  #IAYFRIHA A168 A2%

to be considered carefully. In this paper, a very simple
and effective noise reduction method is presented. The
term ‘simple’ means that there are only two parameters,
which are the sampling rate and the embedding
dimension, are required to successfully apply this
method. This method is based on the algorithm of
reconstruction of phase portrait in [15] which is very
useful for the reconstruction of phase portrait from a
noisy signal.

In this paper, we assume that the noise is additive and
white. This apart we assume that we have no prior
knowledge of the noise-free signal. The signal used in
this paper is from Duffing equation

X +cx —kx(1-x%) = Acos(et) (1)
with parameters fork=1,c =04, A=04and w=1. A
sampled displacement signal ‘x(k)’ is obtained using 4-th
order Runge-Kutta method with fixed integration step
size 0.1 second which gives the sampling frequency f; =
10Hz, and this signal is assumed to be clean. The
Gaussian white noise n(k) is added to the clean signal, so
the noise contaminated signal s(k) is given by
s(k) = x(k) + n(k) 2)

The standard deviation of noise is 50% of standard
deviation of the clean signal. The corresponding Signal-
to-Noise Ratio (SNR = 10log;o(6,/5,)) is 6dB, where
o, and O, are the standard deviation of the clean signal
and the noise signal respectively. These signals are
shown in Fig. 1.
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Fig. 1(a) clean signal
(b) noisy signal: 50 % white noise added (SNR =
6dB)

2. Reconstruction of Phase Portrait and SVD
A usetul method of reconstruction of phase portraits

based on SVD (Singular Value Decomposition) was
introduced by Broomhead et al. [15]. This method
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provides phase portrait reconstruction with a little of
noise reduction. From the measured discrete time series
{vili=1, -, Ng}, where Nt is the number of data
points, a sequence of vectors {x;€ R"Ii=1, -, N} can
be generated and the trajectory matrix X can be
constructed in n-embedding dimension

T

Xi Vi Vo ot Vg
T

X = X2 |- Y2 V3 . .Vn+l 3)
XK VN YN+ 7 YN#n-l

where N = Np—(n—-1). Note that the matrix X is the
pseudo phase portrait (by the ‘method of delays’) in n-
dimensional pseudo phase space with a delay time of
‘one unit’. The SVD of the trajectory matrix gives

X =SzCT @
where, S is the Nxn matrix of eigenvectors of XX, C is
the nxn matrix of eigenvectors of X'X and X is the n x n
diagonal matrix consisting of singular values, i.e.,
diag(oy, G,, - ,0,). Rearranging (4),

XC=S8z (&)

The matrix XC is the trajectory matrix projected onto
basis {c¢;}, where ‘¢; is the i-th column of C. One can
think of the trajectory as exploring on average, an n-
dimensional ellipsoid, where the {¢;} represent directions
and the {0;} represent the lengths of the principal axes of
the ellipsoid [15]. The main concept of this method is to
extract the dimensionality n’ (minimum embedding
dimension) of the subspace containing the embedded
manifold, where, n” < n. The dimensionality n’ is the rank
of the eigenvector matrices (Rank(S) = Rank(C)), where
the rank is the number of non-zero singular values. At
this point, one can intuitively think of the physical
meaning of the dimensionality n’ as an effective
embedding dimension. In other words, the matrix XC
with embedding dimension n’ has no less information
than the matrix with embedding dimension ‘n’. Also,
note that the SVD ensures that each column of the matrix
XC is linearly independent. In the presence of noise, the
noise causes all the singular values of the trajectory
matrix to be non-zero. However, assuming the noise is
white, the noise will cause all the singular values of X to
be shifted uniformly, i.e., they can be written as
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2 —=2 2
Gi =G i + 0 noise

0'2k+l =,

i=1,2,---,k

6)
2 2

»=0 " n = O noise

where G, are the singular values of the noise floor, and
the trajectory matrix can also be written as

X=X+N

-5, Sz][zol zoj{gﬂ

is the deterministic part of the trajectory

v

X
matrix, N is the noise dominated part, §;, € RV, I, e
R* and C; € R™. In order to separate the noise
dominated part from the trajectory matrix, one can

where

estimate the deterministic part X by either least-squares
or minimum variance estimate. The least squares
estimate of X is given by [16 -18]
X, =85,5,C," ®
and the minimum variance estimate is given by {16, 17]
ie = S]2"1—1(212 ‘Gznoiselk)ClT ®
where, I is the ‘k X k’ identity matrix. From (8) or (9),
we can see that the deterministic part of the trajectory
matrix can be estimated by using the SVD of X. The
matrix XC now becomes X.C; which is less noisy.
if the
deterministic part is not significantly greater than the

However, smallest singular value of the
noise level, the above method is a little problematic
especially for reconstruction of phase portraits.

Equation (6) has a special meaning in that the ratio of
singular values ‘G; > Opie (above the noise floor) and
Onoise epresents the signal-to-noise ratios which are
associated with each singular vector s; (each column of
the matrix S), and so the signal-to-noise ratio of the i-th

left singular vector can be written as

2

2
Oi ~ Onoise

SNR; = 10log——
G hnoise
Thus, ‘G°/0%is’ Tepresents the SNR of the first column
of the matrix X.C,, and ‘0%)/C oise’ TEPresents the SNR
of the second column of the matrix X.Cy, and so on.
Thus, the reconstructed phase portraits using the above
method may be degraded by the part associated with the

(10)

singular values which are not significantly greater than
Onoise- The singular values of the trajectory matrix
constructed by the clean signal ‘x(k)’ and the pseudo
phase portrait by SVD are shown in Fig. 2. The above
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problem is shown in Fig. 3. The singular values of the
trajectory matrix constructed by the noisy signal ‘s(k) =
x(k) + n(k)’ and the corresponding pseudo phase portrait
by the first and second column of the matrix X.C, are
shown in Fig. 3(a), (b). The first two columns of the
matrix X.C; of the noisy signals are shown in Fig. 3(c),
(d). From' these Figures, it can be shown that the
reconstructed phase portraits are greatly degraded by the
second column of the matrix X.C; which has far lower
SNR compared to the first column of the matrix X.C; .
Also the dimensionality (number of non-zero singular
values) n’ is estimated ‘2’ for noisy signals (Fig. 3(a))
rather than ‘3’ for the clean signal (Fig. 2(a)).

b

Fig. 2(a) Singular values of the trajectory matrix
constructed by the clean signal x(k)
(b) Pseudo Phase Portraits reconstructed by SVD
(normalised version of the matrix ieC‘ )
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Fig. 3 Reconstructed phase portraits by using the SVD
for noisy signal
(a) Singular values
(b) Pseudo Phase Portraits reconstructed by SVD
(normalised version of the matrix X,.C,)
(c) 1st column of the matrix ieCI
(d) 2nd column of the matrix X,C,

3. The Iterative SVD Method and Applications
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The method used
described in the previous section, is named as the
‘Iterative SVD method’. For the purpose of noise
reduction (not reconstruction of phase portrait), if we can
use the first singular value only in (8) or (9), then we can
maximise the signal-to noise ratio. In order to do this, the

to overcome the problem,

first singular value must contain most of the energy of
the deterministic signal. This will happen when dealing
with low dimensional systems (Lorenz equation, Duffing
equation, etc.). First, an example using a sinusoid is
considered since in this case the first singular value
carries most of the energy of the signal. If the trajectory
matrix is constructed from a sinusoidal signal, we can
write

sin(ax)

sin{ex +¢) sin(ox +(n-1)p)

sinox +9)

sin{ax +2¢) (an

sin(t +nd)
sin(@ +(N-1)p) sin@+N¢) --- sin{xt+(N+n-2)p)
where, the phase delay ‘n¢’ corresponds to the time delay
‘onTy’, and ‘T’ is the sampling time. Assuming each
column of the matrix contains exact periods of the signal,
the autocovariance matrix ‘X"X’ becomes

1 cos(¢) cos(2 ¢) cos((n - 1))
cos(§) 1 cos( ) :
XTX =0l cos2o) cos(9) 1 cos(2 ) 12
: : : cos(¢)

cos((n -1)¢) cos({n - 2)¢) cos( @) i
where, 6’ is the variance of the signal. It is shown that
the rank of the matrices (11) and (12) is two, and the two

non-zero eigenvalues of (12} are given by [19]

0? sin(ng)
)\.1,).2 ——{'[nim—:l (]3)

Since the square roots of the eigenvalues of (12) are
the singular values of (11), the two non-zero singular
values can be written as

gf’l:ni sin(nq:)H
2 sin(¢)

Equation (14) permits us to determine when the first

0,0, = (14)

singular value carries the most energy of the signal. Note
that it is related to both embedding dimension (n) and
sampling time (¢=wT,). For a given Nxn trajectory
matrix, we may express the energy carried by the first
singular value by
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of

n
Y.o!
i=l

and when the signal contains white noise this becomes
2 2
O} ~Onoise
k
2_ 2
2 (ci = O poise )

i=]

E = (16)

Given the sampling rate, assuming that each column
of the matrix has exactly one period, the ratio of the
energy carried by the first singular value of (11) is shown
in Fig. 4(a). From this Figure, it is shown that if we make
the dimension of the trajectory matrix ‘(n/N)<0.1, then
the first singular value carries more than 97% of the
energy. In other words, each row of the matrix contains
one tenth of the period. This also tells us the necessary
sampling rate. For example, if the embedding dimension
(or column dimension) ‘n’ is estimated as 5, then more
than 50 samples per period is required. The row
dimension ‘N’ of the trajectory matrix does not
significantly affect the nature of the signal compression
as long as the sampling rate and the column dimension
are fixed. This is shown in Fig. 4(b).
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Fig. 4(a) Energy carried by the first singular value (one
sinusoid) with different embedding dimension ‘n’. In
this case, the row dimension and the sampling rate is
fixed.

(b) Energy carried by the first singular value (one
sinusoid) with different row dimension ‘N’. In this
case, the embedding dimension and the sampling rate
is fixed.

Similar results are obtained for the multiple sinusoid
case. In this case the results depend on the variance and
frequency of each sinusoid. Details of these can be found
in reference [20]. The above results require very high
sampling rates especially when the embedding dimension
is estimated to be large, i.e., the sampling rate becomes
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more than ‘10n’ times the highest frequency component.
However, for low dimensional dynamical systems, such
as the Lorenz and Duffing equations, carried out in this
study, the sampling rate of approximately more than 10
times the cut-off frequency is shown to be satisfactory.
The case of the Duffing equation with the same
parameters as in section 2 is shown in Fig. 5(a). Each
column, in this case, has approximately one forcing
period. For the Duffing equation, if the sampling rate is
roughly 10 times the cut-off frequency and the
embedding dimension is set to ‘n = T,/ T, where T is
the sampling time, T, = l/f. and f. is the cut-off
frequency, then the size of row dimension ‘N’ is not very
important. This is shown in Fig. 5(b).

(a) (b)
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Fig. 5(a) Energy carried by the first singular value
(Duffing equation) with different embedding
dimension ‘n’. The row dimension and the sampling
rate is fixed.

(b) Energy carried by the first singular value
(Duffing equation) with different row dimension ‘N’.
In this case, the embedding dimension and the
sampling rate is fixed.

Once we make sure that the energy of the signal is
compressed toward the first singular value, then we can
use only the first singular value to estimate X.in
equation (8) or (9), and this will maximise the signal-to-
noise ratio of the recovered signal, i.e., equations become

X1 =051, 7
2 2
-iel — (01 Gcnmse )SlclT (18)
1

where, s; and ¢; are the first columns of the
corresponding singular vectors in (8) or (9). This
procedure can be considered as optimal filtering.
Consider a linear FIR filter which can be expressed as

yi =w'x; 19)
where x; is the measured sequence with length ‘n’ (x; =
[X; Xi.t ... Xins1]"), and w is the filter with length ‘0’ (W =

[wW, Wy ... w,]7). One can find the FIR filter which
maximises the output variance subject to the constraint

iwiz =wiw=1,ie,
i=l
maximise: E[y;?] = E[w'xx'w]} = w Rw
subject to ww=1 20
To solve this optimisation problem the method of
Laglange multiplier is used.

-a%v—{WTRW AWTw-D}=Rw+iw=0 Q1)

Rw =-Aw (22)
where R is autocovariance matrix of x. Thus, w are the
eigenvectors of the autocovariance matrix R, and A are
the eigenvalues of the matrix R. Since w'Rw = E[yf] =
—AX, the filter w (eigenvector) associated with the largest
eigenvalue gives maximum output variance. Also the
matrix ‘X'X’ from the trajeciory matrix is the
autocovariance matrix. Hence the singular vector
associated with the largest singular value is also the FIR
filter which maximise the output power. Thus equation
(17) or (18) can be considered as the optimal FIR filter.

From equation (17) or (18), it is easily noticed that
X., is an Nxn matrix, where N is the length of each
column vector of the trajectory matrix and n is the
embedding dimension. Each column of the matrix
X, can be considered as a candidate for the noise
reduced signal which is delayed by (n—1) sampling unit.
To maximise the SNR, we can average each column of
the matrix Xe] by compensating for the delays. Then we
obtain the new noise reduced signal x. (k). Because
X.,is only an estimate of the true deterministic part X ,
the recovered signal is not noise free. Thus it may need
several iterations. From the noise reduced signal x.,(k),
we can construct a new trajectory matrix, and then do the
SVD and construct X, again to obtain the further noise
reduced signal. This procedure is iterated until ‘G = 0
or ‘|0 e = 0 ' hoisell < £, Where 6% is the k-th
iterated noise floor, and € is the tolerance which
determines that the noise floor does not change
significantly further. The procedure of this iteration
method is summarised in below

1. Construct the trajectory matrix X from the noisy

signal s(k)
2. Singular Value Decomposition, X = SEC”
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3. Construct the matrix ie, using (17) or (18)

4. Obtain the noise reduced signal x.(k) by
averaging each column of X,

5. Repeat the above procedure (1 to 4) until ‘G =
0 or * [} 6" s0ise=0" " noisc ]| < €’

For white noise considered in this paper, very few
iterations are required to recover the noise reduced
signal, just 2 iterations are required. The noise reduced
signals, using equation (17), are shown in Fig. 6(a). It is
observed that equations (17) and (18) do not differ much
for this example. From this noise reduced signal, we can
reconstruct the pseudo phase portrait by SVD described
in section 2. The singular values of the trajectory matrix
constructed from the recovered signals are shown in Fig.
6(b). From this, we can see the dimensionality n’ is well
recovered and estimated as ‘3’. The reconstructed pseudo
phase portraits are shown in Fig. 6(c). This Figure shows
remarkable recovery compared to the noisy pseudo phase
portrait in Fig. 3(b). The above method (Iterative SVD
Method) is also applied to a real experimental system
[20] to which the Force-state mapping method is applied.
The noise reduction results in [20] are brefly given
below. The measured noisy acceleration signal is shown
in Fig. 7(a), and the corresponding Force-state map is
shown in Fig. 7(b). After applying the ‘lterative SVD
Method’ appropriately, the acceleration signal and the
Force-state map are shown in Fig. 7(c) and 7(d)
respectively.
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Fig. 6 Reconstructed phase portraits and time series by
using the ‘Iterative SVD method’
(a) Recovered time series (solid line), dashed line is
the original clean signal (the recovered signal is
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obtained by 2 iterations of the ‘Iterative SVD
method’)

(b) Singular values of the trajectory matrix
constructed from the recovered signal

(c) Pseudo Phase Portraits reconstructed from the
recovered signal (normalised version of the matrix
iecl )

(b)
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Fig. 7 Results from an experimental signal (Force-state
mapping method)
(a), (b) Measured noisy acceleration signal, and
corresponding Force-state map
(c), (d) Recovered acceleration signal using the
‘Iterative SVD Method’, and corresponding Force-

state map

Conclusion

It can be seen, from the results given in this paper,
that the ‘Iterative SVD method’ is a very useful and
simple method to suppress white noise. Also, this method
is not only applicable to chaotic time series but to
ordinary deterministic signals as shown in section 3.
Chaotic time series is essentially a broad band signal,
thus the above method can also be applied to other types
of broad band signal. However, the signal must be a
deterministic, i.e., directly measured signal from a
physical system. This method also has the additional
advantage, especially for the reconstruction of phase
portrait, that information about the minimum embedding
dimension of the system can be obtained. This is a very
important feature since estimation of the embedding
dimension is one of the most important aspects for
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reconstruction of the phase portrait. This technique is

only valid for filtering out white noise due to the

limitation of the algorithm used in this paper. However,

one may attempt to apply to other types of noise (e.g.,

pink noise, brown noise, etc.) by incorporating other

modern signal processing methods. This deserves further

investigations.
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