• Title/Summary/Keyword: a SDINS

Search Result 80, Processing Time 0.028 seconds

Fault Detection Using Propagator for Kalman Filter and Its Application to SDINS

  • Yu, Jae-Jong;Lee, Jang-Gyu;Park, Chan-Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.978-983
    • /
    • 2003
  • In this paper, we propose a fault detection method for extended Kalman filter in decentralized filter structure. To detect a fault, a consistency between filter output and a monitoring signal is tested. State propagators are used to obtain the monitoring signal. However, the output of state propagator increases in magnitude and finally diverges as time runs. To solve such problem, two-propagator method was proposed for linear system. Two propagators are reset by Kalman filter output, alternatively, to avoid divergence. But a test statistics change abruptly at the reset instant in that method. Hence a N-step propagator method is proposed to fix up the problem. In the N-step propagator, only time propagations are performed from k-N+1 step to k step without measurement updates. A test statistics are defined by errors and its covariance between extended Kalman filter and N-step propagator. These fault detection methods are applied to integrated strapdown inertial navigation system (SDINS). By computer simulation, it is shown that the proposed methods detect a fault effectively.

  • PDF

Robust Observer Design for SDINS In-Flight Alignment (스트랩다운 관성항법시스템의 주행 중 정렬을 위한 강인 관측기 구성)

  • Yu, Myeong-Jong;Lee, Jang-Gyu;Park, Chan-Guk;Sim, Deok-Seon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.8
    • /
    • pp.703-710
    • /
    • 2001
  • The nonlinear observers are proposed for a nonlinear system. To improve the characteristics such as stability, convergence, and $H^{\infty}$ filter performance criterion, we utilize an $H^{\infty}$ filter Riccati equation or a modified $H^{\infty}$ filter Riccati equation with a freedom parameter. Using the Lyapunov function method, the characteristics of the observers are analyzed. Then the in-flight alignment for a strapdown inertial navigation system(SDINS) is designed using the proposed observer. And the additive quaternion error model is especially used to reduce the uncertainty of the SDINS error model. Simulation results show that the observer with the modified $H^{\infty}$ filter Riccati equation effectively improves the performance of the in-flight alignment.

  • PDF

Design of a SDINS using the nonlinear observer (비선형 관측기를 이용한 스트랩다운 관성항법시스템 구성)

  • 유명종;이장규;박찬국;심덕선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.27-27
    • /
    • 2000
  • The nonlinear observers are proposed for a nonlinear system. To improve the characteristics such as a stability, a convergence, and an H$\sub$$\infty$/ filter performance criterion, we utilize and H$\sub$$\infty$/ filter Riccati equation or a modified H$\sub$$\infty$/ filter Riccati equation with a freedom parameter. Using the Lyapunov, the characteristics of the observer are analyzed. Then the in-flight alignment for a strapdown inertial navigation system(SDINS) is designed using the observer proposed. Simulation results show that the observer with the modified H$\sub$$\infty$/ fitter Riccati equation effectively improve the performance of the in-flight alignment.

  • PDF

A Study on the Fabrication and Analysis of Mechanical Parts of a Dynamically Tuned Gyroscope (동조자이로스코우프 기계부의 제작 및 해석에 관한 연구)

  • 안창기;윤종욱;이장무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.930-937
    • /
    • 1994
  • Straodown intertial navigation system(SDINS) is a navigational instrument necessary to guide and control a free vehicle. Dynamically Tuned Gyroscope(DTG) which is widely applied to SDINS convers a wide dynamic range and is simple and small. In study, the analysis of mechanical parts or sensor parts and research of balancing is performed for manufacturing a DTG. In error analysis the criterion considered during designing and manufacturing is established by quantitatively anayzing the effect of DTG performance by tolerance. And the theory of dynamic balancing is derived and unbalance is reduced through experiment. And the stiffness of flexure is verified by tuning experiment.

  • PDF

Error Aalysis of Mechanical Parts and Dynamic Balancing in A Dynamically Tuned Gyroscope (동조자이로스코프의 기계부 오차 해석 및 동적밸런싱)

  • J.O. Young;C.G. Ahn;Lee, J.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.2
    • /
    • pp.13-22
    • /
    • 1997
  • Strapdown inertial navigation system(SDINS) is a navigational instruments necessary to guide and con- trol a free vehicle. In this study, an error analysis of mechanical parts is carried out for manufacturing a dynamically tuned gyroscope. The errors usually come from the tolerance in machining and assembly. In the error analysis, a criterion to be considered during designing and manufacturing is proposed by quanti- tatively analyzing the effect of DTG performance by tolerances. The theory of dynamic balancing is deduced and unbalance is reduced through experiment.

  • PDF

Development of the Algorithm for Strapdown Inertial Navigation System for Short Range Navigation

  • Lee, Sang-Jong;Naumenko, C.;Bograd, V.;Kim, Jong-Chul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.81-91
    • /
    • 2000
  • The mechanization of navigation equation is depending on the designer according to the orientation vector relating the body frame to a chosen to inertial and navigation frames for its purposes. This paper considers the appropriate Earth Fixed frame for short range vehicle and develops a mechanization and algorithm for Strapdown Inertial Navigation System(SDINS). This mechanization consists of two parts : translational mechanization and rotational mechanization{attitude determination). The accuracy, availability and performance of this SDINS mechanization are verified on the simulation and the numerical method for integration attitude propagation is compared with a well-known method in a precession motion.

  • PDF

Performance Analysis of SDINS using Matlab/Simulink (Matlab/Simulink를 이용한 SDINS의 성능 해석)

  • Hong, Young-Sun;Kwon, Tae-Hwan;Kwon, Yong-Soo
    • Journal of Advanced Navigation Technology
    • /
    • v.4 no.2
    • /
    • pp.132-142
    • /
    • 2000
  • This paper includes a study on the performance analysis of SDINS by a simulator using Matlab/Simulink. The performance model is considered gravity and Coriolis force, and a barometer is included to damp down diversity of a perpendicular axis error. Using the simulator, the performance included gyro sensor errors was analyzed in various maneuvering patterns. Also, the performance is virtually presented for the variation of error parameters of gyro and accelerometer under GUI.

  • PDF

Rapid Alignment for SDINS Using Equivalent Linear Transformation (등가선형변환적용 항법시스템 급속 정렬)

  • Yu, Myeong-Jong;Park, Chan-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.419-425
    • /
    • 2007
  • A rapid one-shot alignment method of the Strapdown INS (SDINS) for a vertical launch is proposed. The proposed alignment is performed using the accelerometer output of the Slave INS and the attitude of the Master INS. To improve the accuracy and the speed of the alignment, the equivalent linear transformation and the pre-filtering method are developed. Experiment results show that the proposed method is effective in improving the accuracy and the speed of the alignment.

Ship Flexure Error Compensation of Transfer Alignment via Robust State Estimation (강인한 상태추정에 의한 전달정렬의 선체유연성오차 보상)

  • Lim, You-Chol;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.178-184
    • /
    • 2002
  • This paper deals with the transfer alignment problem of SDINS(StrapDown Inertial Navigation System) subjected to roll and pitch motions of the ship. In order to reduce alignment errors induced by ship body flexure, a linearized error model for the velocity and attitude matching transfer alignment system is first derived by linearizing the nonlinear measurement equation with respect to the dominant y axis component and defining the flexure state of random constant type. And then a robust state estimation scheme is introduced to account for modeling uncertainty of the flexure. By interpreting the simulation results and comparing with the velocity and DCM(Direction Cosine Matrix) partial matching method, it is shown that the proposed method is effective enough to improve the azimuth alignment performance.

Rapid Initial Alignment Method of Inertial Navigation System Using Adaptive Time Delay Compensation (적응형 시간지연 보상을 통한 관성항법장치 급속초기정렬기법)

  • Lee, Hyung-Sub
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.433-439
    • /
    • 2018
  • In this paper, a SDINS(strapdown inertial navigation system) rapid initial alignment technique with adaptive time delay compensation is proposed. The proposed method consists of two steps. In first step, misalignment and data latency are estimated by conducting pre-transfer alignment. Then, hybrid alignment is designed to rapidly find the misalignment changes induced by pyro-shock. To improve the performance of hybrid alignment, adaptive time delay compensation method is suggested. We verify the performance improvement of the proposed alignment scheme comparing with the conventional transfer alignment method by van test. The test result shows that the proposed alignment technique improves alignment performance.