• Title/Summary/Keyword: ZnTe thin film

Search Result 39, Processing Time 0.028 seconds

Synthesis and Characterization of CZTS film deposited by Chemical Bath Deposition method

  • Arepalli, Vinaya Kumar;Kumar, Challa Kiran;Park, Nam-Kyu;Nang, Lam Van;Kim, Eui-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.99.1-99.1
    • /
    • 2012
  • The thin-film photovoltaic absorbers (CdTe and $Cu(In,Ga)Se_2$) can achieve solar conversion efficiencies of up to 20% and are now commercially available, but the presence of toxic (Cd,Se) and expensive elemental components (In, Te) is a real issue as the demand for photovoltaics rapidly increases. To overcome these limitations, there has been substantial interest in developing viable alternative materials, such as $Cu_2ZnSnS_4$ (CZTS) is an emerging solar absorber that is structurally similar to CIGS, but contains only earth abundant, non-toxic elements and has a near optimal direct band gap energy of 1.4 - 1.6 eV and a large absorption coefficient of ~104 $cm^{-1}$. The CZTS absorber layers are grown and investigated by various fabrication methods, such as thermal evaporation, e-beam evaporation with a post sulfurization, sputtering, non-vacuum sol-gel, pulsed laser, spray-pyrolysis method and electrodeposition technique. In the present work, we report an alternative aqueous chemical approach based on chemical bath deposition (CBD) method for large area deposition of CZTS thin films. Samples produced by our method were analyzed by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, absorbance and photoluminescence. The results show that this inexpensive and relatively benign process produces thin films of CZTS exhibiting uniform composition, kesterite crystal structure, and some factors like triethanolamine, ammonia, temperature which strongly affect on the morphology of CZTS film.

  • PDF

Improvement in Performance of Cu2ZnSn(S,Se)4 Absorber Layer with Fine Temperature Control in Rapid Thermal Annealing System (Cu2ZnSn(S,Se)4(CZTSSe) 흡수층의 급속 열처리 공정 온도 미세 조절을 통한 특성 향상)

  • Kim, Dong Myeong;Jang, Jun Sung;Karade, Vijay Chandrakant;Kim, Jin Hyeok
    • Korean Journal of Materials Research
    • /
    • v.31 no.11
    • /
    • pp.619-625
    • /
    • 2021
  • Cu2ZnSn(S,Se)4 (CZTSSe) based thin-film solar cells have attracted growing attention because of their earth-abundant and non-toxic elements. However, because of their large open-circuit voltage (Voc)-deficit, CZTSSe solar cells exhibit poor device performance compared to well-established Cu(In,Ga)(S,Se)2 (CIGS) and CdTe based solar cells. One of the main causes of this large Voc-deficit is poor absorber properties for example, high band tailing properties, defects, secondary phases, carrier recombination, etc. In particular, the fabrication of absorbers using physical methods results in poor surface morphology, such as pin-holes and voids. To overcome this problem and form large and homogeneous CZTSSe grains, CZTSSe based absorber layers are prepared by a sputtering technique with different RTA conditions. The temperature is varied from 510 ℃ to 540 ℃ during the rapid thermal annealing (RTA) process. Further, CZTSSe thin films are examined with X-ray diffraction, X-ray fluorescence, Raman spectroscopy, IPCE, Energy dispersive spectroscopy and Scanning electron microscopy techniques. The present work shows that Cu-based secondary phase formation can be suppressed in the CZTSSe absorber layer at an optimum RTA condition.

Growth and characterization of $Cu_2ZnSnSe_4$ (CZTSe) thin films by sputtering of binary selenides and selenization

  • Munir, Rahim;Jung, Gwang-Sun;Ahn, Byung-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.98.2-98.2
    • /
    • 2012
  • Thin film solar cells are growing up in the market due to their high efficiency and low cost. Especially CdTe and $CuInGaSe_2$ based solar cells are leading the other cells, but due to the limited percentage of the elements present in our earth's crust like Tellurium, Indium and Gallium, the price of the solar cells will increase rapidly. Copper Zinc Tin Sulfide (CZTS) and Copper Zinc Tin Selenide (CZTSe) semiconductor (having a kesterite crystal structure) are getting attention for its solar cell application as the absorber layer. CZTS and CZTSe have almost the same crystal structure with more environmentally friendly elements. Various authors have reported growth and characterization of CZTSe films and solar cells with efficiencies about 3.2% to 8.9%. In this study, a novel method to prepare CZTSe has been proposed based on selenization of stacked Copper Selenide ($Cu_2Se$), Tin Selenide ($SnSe_2$) and Zinc Selenide (Zinc Selenide) in six possible stacking combinations. Depositions were carried out through RF magnetron sputtering. Selenization of all the samples was performed in Close Space Sublimation (CSS) in vacuum at different temperatures for three minutes. Characterization of each sample has been performed in Field Emission SEM, XRD, Raman spectroscopy, EDS and Auger. In this study, the properties and results of $Cu_2ZnSnSe_4$ thin films grown by selenization will be presented.

  • PDF

Influence of post-annealing temperature on double layer ZTO/GZO deposited by magnetron co-sputtering

  • Oh, Sung Hoon;Cho, Sang Hyun;Jung, Jae Heon;Kang, Sae Won;Cheong, Woo Seok;Lee, Gun Hwan;Song, Pung Keun
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc1
    • /
    • pp.140-144
    • /
    • 2012
  • Ga-doped ZnO (GZO) was a limit of application on the photovoltaic devices such as CIGS, CdTe and DSSC requiring high process temperature, because it's electrical resistivity is unstable above 300 ℃ at atmosphere. Therefore, ZTO (zinc tin oxide) was introduced in order to improve permeability and thermal stability of GZO film. The resistivity of GZO (300 nm) single layer increased remarkably from 1.8 × 10-3Ωcm to 5.5 × 10-1Ωcm, when GZO was post-annealed at 400 ℃ in air atmosphere. In the case of the ZTO (150 nm)/GZO (150 nm) double layer, resistivity showed relatively small change from 3.1 × 10-3Ωcm (RT) to 1.2 × 10-2Ωcm (400 ℃), which showed good agreement with change of carrier density. This result means that ZTO upper layer act as a barrier for oxygen at high temperature. Also ZTO (150 nm)/GZO (150 nm) double layer showed lower WVTR compared to GZO (300 nm) single layer. Because ZTO has lower WVTR compared to GZO, ZTO thin film acts as a barrier by preventing oxygen and water molecules to penetrate on top of GZO thin film.

Analysis of Photovoltaic Performance Improvement of Cu2Zn1-xCdxSn(SxSe1-x)4 Thin Film Solar Cells by Controlling Cd2+ Element Alloying Time Using CBD Method (CBD 공법을 이용하여 Cd2+ 원소 Alloying 시간을 조절한 Cu2Zn1-xCdxSn(SxSe1-x)4 박막 태양전지의 광전지 성능 향상 분석)

  • Sang Woo, Park;Suyoung, Jang;Jun Sung, Jang;Jin Hyeok, Kim
    • Korean Journal of Materials Research
    • /
    • v.32 no.11
    • /
    • pp.481-488
    • /
    • 2022
  • The Cu2ZnSn(SxSe1-x)4 (CZTSSe) absorbers are promising thin film solar cells (TFSCs) materials, to replace existing Cu(In,Ga)Se2 (CIGS) and CdTe photovoltaic technology. However, the best reported efficiency for a CZTSSe device, of 13.6 %, is still too low for commercial use. Recently, partially replacing the Zn2+ element with a Cd2+element has attracting attention as one of the promising strategies for improving the photovoltaic characteristics of the CZTSSe TFSCs. Cd2+ elements are known to improve the grain size of the CZTSSe absorber thin films and improve optoelectronic properties by suppressing potential defects, causing short-circuit current (Jsc) loss. In this study, the structural, compositional, and morphological characteristics of CZTSSe and CZCTSSe thin films were investigated using X-ray diffraction (XRD), X-ray fluorescence spectrometer (XRF), and Field-emission scanning electron microscopy (FE-SEM), respectively. The FE-SEM images revealed that the grain size improved with increasing Cd2+ alloying in the CZTSSe thin films. Moreover, there was a slight decrease in small grain distribution as well as voids near the CZTSSe/Mo interface after Cd2+ alloying. The solar cells prepared using the most promising CZTSSe absorber thin films with Cd2+ alloying (8 min. 30 sec.) exhibited a power conversion efficiency (PCE) of 9.33 %, Jsc of 34.0 mA/cm2, and fill factor (FF) of 62.7 %, respectively.

Effect of Post-Annealing and ZTO Thickness of ZTO/GZO Thin Film for Dye-Sensitized Solar Cell

  • Song, Sang-U;Lee, Gyeong-Ju;No, Ji-Hyeong;Park, On-Jeon;Kim, Hwan-Seon;Ji, Min-U;Mun, Byeong-Mu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.405-406
    • /
    • 2013
  • Ga-doped ZnO (GZO)는 $300^{\circ}C$ 이상의 온도에서는 전기적으로 불안정하기 때문에 CIGS, CdTe, DSC와 같은 태양전지의 높은 공정온도 때문에 사용이 제한적이다. ZTO thin film은 Al2O3, SiO2, TiO2, ZnO tihin film과 비교하여 산소 및 수분에 대하여 투과성이 상대적으로 낮은 것으로 알려져 있다. 따라서 GZO single layer에 비하여 ZTO-GZO multi-layer를 구성하여 TCO를 제작하면, 높은 공정온도에서도 사용 가능하다. 실제 제작된 GZO single layer (300 nm)에서 비저항이 $7.69{\times}10^{-4}{\Omega}{\cdot}cm$에서 $500^{\circ}C$에서 열처리 후 $7.76{\times}10^{-2}{\Omega}{\cdot}cm$으로 급격하게 상승한다. ZTO single layer (420 nm)는 as-grown에서는 측정 불가했지만, $400^{\circ}C$에서 열처리 후 $3.52{\times}10^{-1}{\Omega}{\cdot}cm$ $500^{\circ}C$에서 열처리 후 $4.10{\times}10^{-1}{\Omega}{\cdot}cm$으로 열처리에 따른 큰 변화가 없다. 또한 ZTO-GZO multi-layer (720 nm)의 경우 비저항이 $2.11{\times}10^{-3}{\Omega}{\cdot}cm$에서 $500^{\circ}C$에서 열처리 후 $3.67{\times}10^{-3}{\Omega}{\cdot}cm$으로 GZO에 비하여 상대적으로 변화폭이 작다. 또한 ZTO의 두께에 따른 영향을 확인하기 위하여 ZTO를 2 scan, 4 scan, 6 scan 공정 진행 및 $500^{\circ}C$에서 열처리 후 ZTO, ZTO-GZO thin film의 비저항을 측정하였다. ZTO의 경우 $3.34{\times}10^{-1}{\Omega}{\cdot}cm$ (2 scan), $3.62{\times}10^{-1}{\Omega}{\cdot}cm$ (4 scan), $4.1{\times}10^{-1}{\Omega}{\cdot}cm$ (6 scan)으로 큰 차이가 없으며, ZTO-GZO에서도 $3.73{\times}10^{-3}{\Omega}{\cdot}cm$ (2 scan), $3.42{\times}10^{-3}{\Omega}{\cdot}cm$ (4 scan), $3.67{\times}10^{-3}{\Omega}{\cdot}cm$ (6 scan)으로 큰 차이가 없음을 확인하였다. 염료감응 태양전지에 적용하여 기존에 사용되는 FTO대신에 ZTO-GZO를 사용하며, 가격적 측면, 성능적 측면에서 개선 가능할 것으로 생각된다.

  • PDF

Change of I-V Properties of Flexible CZTS Solar Cell Through Mechanical Bending Test (굽힘 시험에 의한 플렉시블 CZTS 태양전지의 I-V 특성 변화에 관한 연구)

  • Kim, Sungjun;Kim, Jeha
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.197-202
    • /
    • 2022
  • The CZTS solar cell is a thin film solar cell using an absorption layer composed of Cu, Zn, Sn, Se, and S, and is cheaper than a CIGS solar cell using In and Ga and more eco-friendly than a perovskite and CdTe solar cell using Pb and Cd. In this study, we conducted a bending test for flexible CZTS solar cells. Experiments were conducted in the direction of inner benidng with compressive stress and outer bending with tensile stress, and during the number of bending 1,000 times with a radius of curvature of 50 mmR, the efficiency of the solar cell decreased by up to 12.7%, and the biggest cause of efficiency reduction in both directions was a large decrease in parallel resistance.

The Residual Stress Effect on Microstructure and Optical Property of ZnO Films Produced by RF Sputtering (R.F Sputtering으로 제조한 ZnO박막의 미세구조와 광학적 특성에 미치는 잔류응력의 영향)

  • Ryu, Sang;Kim, Young-Man
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.4
    • /
    • pp.144-149
    • /
    • 2005
  • ZnO films were produced on the Si(100) and sapphire(0001) wafers by RF magnetron sputtering in terms of processing variables such as substrate temperature and RF power. The stress in films was obtained from the Stoney's formula using a laser scanning device. The stress levels in the films showed the range from $\~40$ MPa to $\~-1100$MPa depending on processing variables. The specimens were thermally cycled from R.T. to $250^{\circ}C$ to investigate the stress variation as a function of temperature. SEM was employed to characterize the microstructure of te films. As the substrate temperature increased, the film surface became rougher and the films showed coarser grains. The optical property o the films was studied by PL measurements. At the highest substrate temperature $800^{\circ}C$ the film exhibited sharper UV peaks unlike other conditions.

Optical Property of Super-RENS Optical Recording Ge2Sb2Te5 Thin Films at High Temperature (초해상 광기록 Ge2Sb2Te5 박막의 고온광물성 연구)

  • Li, Xue-Zhe;Choi, Joong-Kyu;Lee, Jae-Heun;Byun, Young-Sup;Ryu, Jang-Wi;Kim, Sang-Youl;Kim, Soo-Kyung
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.5
    • /
    • pp.351-361
    • /
    • 2007
  • The samples composed of a GST thin film and the protective layers of $ZnS-SiO_2$ or $Al_2O_3$ coated on c-Si substrate were prepared by using the magnetron sputtering method. Samples of three different structures were prepared, that is, i) the GST single film on c-Si substrate, ii) the GST film sandwiched by the protective $ZnS-SiO_2$ layers on c-Si substrate, and iii) the GST film sandwiched by $Al_2O_3$ protective layers on c-Si substrate. The ellipsometric constants in the temperature range from room temperature to $700^{\circ}C$ were obtained by using the in-situ ellipsometer equipped with a conventional heating chamber. The measured ellipsometric constants show strong variations versus temperature. The variation of ellipsometric constants at the temperature region higher than $300^{\circ}C$ shows different behaviors as the ambient medium is changed from in air to in vacuum or the protective layers are changed from $ZnS-SiO_2$ to $Al_2O_3$. Since the long heating time of 1-2 hours is believed to be the origin of the high temperature variation of ellipsometric constants upon the heating environment and the protective layers, a PRAM (Phase-Change Random Access Memory) recorder is introduced to reduce the heating time drastically. By using the PRAM recorder, the GST samples are heated up to $700^{\circ}C$ decomposed preventing its partial evaporation or chemical reactions with adjacent protective layers. The surface image obtained by SEM and the surface micro-roughness verified by AFM also confirmed that samples prepared by the PRAM recorder have smoother surface than the samples prepared by using the conventional heater.