• 제목/요약/키워드: ZnO substrates

검색결과 477건 처리시간 0.035초

ZnO 에피 박막의 성장 거동과 광 특성 (Growth behavior and optical property of ZnO epitaxial films)

  • 강승민
    • 한국결정성장학회지
    • /
    • 제14권6호
    • /
    • pp.253-256
    • /
    • 2004
  • 단결정상의 ZnO 에피 박막 성장을 사파이어 기판의 (0001)면 상에 RF magnetron sputtering 법으로 수행하였다. 200~$600^{\circ}C$까지의 기판의 온도를 변화하여 가면서 ZnO 에피 박막의 성장 거동을 조사하였으며, 성장된 ZnO 박막에 대하여 산소분위기에서 400, 600, $800^{\circ}C$에서 각각 아닐링을 하여 이에 대한 광 특성을 평가하였다. Hall measurement에 의해 측정 된 carrier concentratin은 $600^{\circ}C$에서 아닐링하여 $2.6${\times}$10^{16}\textrm{cm}^{-3}$이었다.

Effect of Al Doping on the Properties of ZnO Nanorods Synthesized by Hydrothermal Growth for Gas Sensor Applications

  • Srivastava, Vibha;Babu, Eadi Sunil;Hong, Soon-Ku
    • 한국재료학회지
    • /
    • 제30권8호
    • /
    • pp.399-405
    • /
    • 2020
  • In the present investigation we show the effect of Al doping on the length, size, shape, morphology, and sensing property of ZnO nanorods. Effect of Al doping ultimately leads to tuning of electrical and optical properties of ZnO nanorods. Undoped and Al-doped well aligned ZnO nanorods are grown on sputtered ZnO/SiO2/Si (100) pre-grown seed layer substrates by hydrothermal method. The molar ratio of dopant (aluminium nitrate) in the solution, [Al/Zn], is varied from 0.1 % to 3 %. To extract structural and microstructural information we employ field emission scanning electron microscopy and X-ray diffraction techniques. The prepared ZnO nanorods show preferred orientation of ZnO <0001> and are well aligned vertically. The effects of Al doping on the electrical and optical properties are observed by Hall measurement and photoluminescence spectroscopy, respectively, at room temperature. We observe that the diameter and resistivity of the nanorods reach their lowest levels, the carrier concentration becomes high, and emission peak tends to approach the band edge emission of ZnO around 0.5% of Al doping. Sensing behavior of the grown ZnO nanorod samples is tested for H2 gas. The 0.5 mol% Al-doped sample shows highest sensitivity values of ~ 60 % at 250 ℃ and ~ 50 % at 220 ℃.

ZnO와 Al-doped ZnO 박막의 표면 형상과 전기·광학적 특성에 미치는 Wet Etching 시간의 영향 (The Effect of Wet Etching Time on the Surface Roughness and Electrical and Optical Properties of ZnO, and Al-doped ZnO Films)

  • 김민성
    • 한국전기전자재료학회논문지
    • /
    • 제26권3호
    • /
    • pp.194-197
    • /
    • 2013
  • We investigated the effect of etching time on the surface roughness, and electrical and optical properties of ZnO and 2 wt% Al-doped ZnO (AZO) films. The ZnO and AZO films were deposited on glass substrates by RF magnetron sputtering technique. The etching experiment was carried out using a solution of 5% HCl at room temperature. The surface roughness was characterized by Atomic Force Microscopy. The electrical property was measured by Hall measurement system and 4-point probe. The optical property was characterized by UV-vis spectroscopy. After the wet chemical etching, the surface textures were obtained on the surface of the ZnO and AZO films. With the increase of etching time, the surface roughness (RMS) of the films increased and the transmittance of the films was observed to decrease. For the AZO film, a low resistivity of $1.0{\times}10^{-3}\;{\Omega}{\cdot}cm$ was achieved even after the etching.

Cosputtering법으로 증착한 ZnO박막의 Al도핑농도가 미세구조 및 물리적 특성에 끼치는 효과 (Effects of Al Doping Concentration on the Microstructure and Physical Properties of ZnO Thin Films Deposited by Cosputtering)

  • 임근빈;이종무
    • 한국재료학회지
    • /
    • 제15권9호
    • /
    • pp.604-607
    • /
    • 2005
  • Dependence of the crystallinity, surface roughness, carrier concentration, carrier mobility, electrical resistivity and transmittance of Al-doped ZnO films deposited on glass substrates by RF-magnetron sputtering on effects of the ratio of the RF power for AlZnO to that for ZnO (R) have been investigated. X-ray diffraction spectra show strong preferred orientation along the c-axis. The full width at half maximum (FWHM) of the ZnO (002) peak decreases slightly as R increases in the range of R<1.0, whereas it increases substantially in the range of R>1.0. Scanning electron micrographs (SEM) show that the ZnO film surface becomes coarse as R increases. The carrier concentration and the carrier mobility in the ZnO thin film are maximal for R=1.5 and 1.0, respectively. The electrical resistivity is minimal for R=1.0 The transmittance of the ZnO:Al film tends to increase, but to decrease slightly in the range of R>0.5. It may be concluded that the optimum R value is 1.0, considering all these analysis results. The cause of the changes in the structure and physical properties of ZnO thin films with R are also discussed.

MOCVD에 의한 ZnO 합성에서 기체혼합비가 박막의 물성에 미치는 영향 (Effects of Gas Mixing Ratio on the Properties of Thin Films in the ZnO Synthesis by MOCVD)

  • 서문규;이종인
    • 한국전기전자재료학회논문지
    • /
    • 제26권2호
    • /
    • pp.109-113
    • /
    • 2013
  • ZnO thin films were synthesized on Si substrates by MOCVD using diethyl zinc as a precursor. Effects of $O_2$/DEZ gas mixing ratio on the growth rate, surface morphology, preferred orientation, and electrical properties of the ZnO thin films were investigated with SEM, XRD, and Hall measurement. The surface reflectance variations of ZnO thin films were analyzed using laser-photometer apparatus. As the $O_2$/DEZ mixing ratio increased, growth rate and $I_{(002)}/I_{(101)}$ in XRD of ZnO thin films decreased, and the crystal structure was changed from columnar to planar structure. All ZnO films deposited at various CVD conditions exhibited c-axis (002) plane preferred orientation. The electrical properties of ZnO thin films mainly depended on the carrier mobility.

Influence of Nanoporous Oxide Substrate on the Performance of Photoelectrode in Semiconductor-Sensitized Solar Cells

  • Bang, Jin Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권12호
    • /
    • pp.4063-4068
    • /
    • 2012
  • Oxide substrates in semiconductor-sensitized solar cells (SSSCs) have a great impact on their performance. $TiO_2$ has long been utilized as an oxide substrate, and other alternatives such as ZnO and $SnO_2$ have also been explored due to their superior physical properties over $TiO_2$. In the development of high-performance SSSCs, it is of significant importance to understand the effect of oxides on the electron injection and charge recombination as these two are major factors in dictating solar cell performance. In addition, elucidating the relationship between these two critical processes and solar cell performance in each oxide is critical in building up the basic foundation of SSSCs. In this study, ultrafast pump-probe laser spectroscopy and open-circuit decay analysis were conducted to examine the characteristics of three representative oxides ($TiO_2$, ZnO, and $SnO_2$) in terms of electron injection kinetics and charge recombination, and the implication of results is discussed.

PLD로 증착한 ZnO 박막의 후열처리 효과 연구 (Effect of post-annealing treatment on the properties of ZnO thin films grown by PLD)

  • 배상혁;이상렬
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 춘계학술대회 논문집 디스플레이 광소자 분야
    • /
    • pp.125-128
    • /
    • 2000
  • ZnO thin films on silicon substrates have been deposited by pulsed laser deposition technique(PLD). A Nd:YAG laser was used with the wavelength of 355 nm. In order to investigate the effect of oxygen post-annealing treatment on the property of ZnO thin films, deposited film has been annealed at the substrate temperature of $440^{\circ}C$. After post-annealing treatment in the oxygen ambient, the stoichiometry of ZnO film has been characterized be improved which results in higher UV emission intensity of photoluminescence.

  • PDF

열처리 온도에 따른 P-doped ZnO 박막의 구조적 및 전기적 특성 (Structure and Electrical Properties of P-doped ZnO Thin Films with Annealing Temperatures)

  • 한정우;윤영섭;강성준;정양희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.501-502
    • /
    • 2008
  • In this study, P-doped ZnO thin films were prepared on sapphire substrates by pulsed laser deposition and annealing method. The electrical properties were investigated as a function of annealing temperatures at a fixed oxygen pressure. The XRD measurement showed that p-doped ZnO thin films were c-axis oriented. The Hall measurement showed that p-type ZnO thin film was observed. The carrier concentration of $1.18{\times}10^{16}cm^{-3}$ and the mobility of $0.96\;cm^{-3}/Vs$ were obtained for the P-doped ZnO thin film fabricated annealing temperature $850^{\circ}C$.

  • PDF

Li Dopant가 ZnO 세라믹스의 전기적 특성과 미세 구조에 미치는 영향 (Effects of Li Dopant on Electrical Properties and Microstructure of ZnO Ceramics)

  • 전민철;고중혁
    • 한국전기전자재료학회논문지
    • /
    • 제25권4호
    • /
    • pp.282-285
    • /
    • 2012
  • It is well known that Zinc Oxide (ZnO) is an attractive material for its various applications. ZnO has been mostly used as a transparent conducting oxide in liquid crystal displays, solar cells due to its advantages of low cost, high productivity, and excellent electrical conductivity. Notably, flexible-dye-sensitized solar cells (DSSCs) based on polyethylene terephthalate (PET) substrates require low temperature sintering processing conditions. Therefore, low temperature processing conditions have been strongly required for transparent conducting film applications. In this paper, we prepared low temperature-sintered ZnO ceramics employing Li as a sintering aid.

ZnO 압전변환기의 주파수특성에 관한 연구 (A Study on the frequency characteristic of ZnO Piezoelectric transducers)

  • 정규원;이종덕;정광천;박상만;송준태
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1996년도 춘계학술대회 논문집
    • /
    • pp.189-192
    • /
    • 1996
  • In this paper ZnO Piezoelectric transducers were fabricated as follows, counter electrode (pt 99.9%) was deposited on the sapphire substrates by DC sputter method, and then piezoelectric layer (ZnO 99.999%) was deposited on the counter electrode according to the sputtering parameters, and then top electrode (pt 99.9%) was deposited on the piezoelectric layer by Electron Beam Gun Evaporator. Structural characteristic of deposited ZnO thin film was measured by XRD, SEM. Also, Frequency characteristic of ZnO transducer was analyzed theoretically and practically for input frequencies.

  • PDF