DOI QR코드

DOI QR Code

Effect of Al Doping on the Properties of ZnO Nanorods Synthesized by Hydrothermal Growth for Gas Sensor Applications

  • Srivastava, Vibha (Department of Materials Science Engineering, Chungnam National University) ;
  • Babu, Eadi Sunil (Department of Materials Science Engineering, Chungnam National University) ;
  • Hong, Soon-Ku (Department of Materials Science Engineering, Chungnam National University)
  • Received : 2020.04.29
  • Accepted : 2020.07.20
  • Published : 2020.08.27

Abstract

In the present investigation we show the effect of Al doping on the length, size, shape, morphology, and sensing property of ZnO nanorods. Effect of Al doping ultimately leads to tuning of electrical and optical properties of ZnO nanorods. Undoped and Al-doped well aligned ZnO nanorods are grown on sputtered ZnO/SiO2/Si (100) pre-grown seed layer substrates by hydrothermal method. The molar ratio of dopant (aluminium nitrate) in the solution, [Al/Zn], is varied from 0.1 % to 3 %. To extract structural and microstructural information we employ field emission scanning electron microscopy and X-ray diffraction techniques. The prepared ZnO nanorods show preferred orientation of ZnO <0001> and are well aligned vertically. The effects of Al doping on the electrical and optical properties are observed by Hall measurement and photoluminescence spectroscopy, respectively, at room temperature. We observe that the diameter and resistivity of the nanorods reach their lowest levels, the carrier concentration becomes high, and emission peak tends to approach the band edge emission of ZnO around 0.5% of Al doping. Sensing behavior of the grown ZnO nanorod samples is tested for H2 gas. The 0.5 mol% Al-doped sample shows highest sensitivity values of ~ 60 % at 250 ℃ and ~ 50 % at 220 ℃.

Keywords

References

  1. R. A. Soref, Proc. IEEE, 81, 1687 (1993). https://doi.org/10.1109/5.248958
  2. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader and H. M. von Driel, Nature, 405, 437 (2000). https://doi.org/10.1038/35013024
  3. S. Pearton, Nat. Mater., 3, 203 (2004). https://doi.org/10.1038/nmat1102
  4. X. Wang, C. J. Summers and Z. L. Wang, Nano Lett., 4, 423 (2004). https://doi.org/10.1021/nl035102c
  5. H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen and M. Meyyappan, Nano Lett., 4, 1247 (2004). https://doi.org/10.1021/nl049461z
  6. L. E. Jensen, M. T. Bjork, S. Jeppesen, A. I. Persson, B. J. Ohlsson and L. Samuelson, Nano Lett., 4, 1961 (2004). https://doi.org/10.1021/nl048825k
  7. A. I. Hochbaum, R. Fan, R. He and P. Yang, Nano Lett., 5, 457 (2005). https://doi.org/10.1021/nl047990x
  8. P. Nguyen, H. T. Ng and M. Meyyappan, Adv. Mater., 17, 549 (2005). https://doi.org/10.1002/adma.200400908
  9. D. S. Kim, R. Ji, H. J. Fan, F. Bertram, R. Scholz, A. Dadgar, K. Nielsch, A. Krost, J. Christen, U. Gosele and M. Zacharias, Small, 3, 76 (2007). https://doi.org/10.1002/smll.200600307
  10. M. C. Jeong, B. Y. Oh, M. H. Ham and J. M. Myoung, Appl. Phys. Lett., 88, 202105 (2006). https://doi.org/10.1063/1.2204655
  11. D. C. Kim, W. S. Han, B. H. Kong, H. K. Cho and C. H. Hong, Phys. B, 401, 386 (2007). https://doi.org/10.1016/j.physb.2007.08.194
  12. H. Wang, S. Baek, J. Song, J. Lee and S. Lim, Nanotechnology, 19, 075607 (2008). https://doi.org/10.1088/0957-4484/19/7/075607
  13. C. Xu, M. Kim, J. Chun and D. Kim, Appl. Phys. Lett., 86, 133107 (2005). https://doi.org/10.1063/1.1888035
  14. S. Y. Bae, C. W. Na, J. H. Kang and J. Park, J. Phys. Chem. B, 109, 2526 (2005). https://doi.org/10.1021/jp0458708
  15. Y. J. Li, M. Y. Lu, C. W. Wang, K. M. Li and L. J. Chen, Appl. Phys. Lett., 88, 143102 (2006). https://doi.org/10.1063/1.2191418
  16. S. Y. Li, P. Lin, C. Y. Lee, T. Y. Tseng and C. J. Huang, J. Phys. D: Appl. Phys., 37, 2274 (2004). https://doi.org/10.1088/0022-3727/37/16/009
  17. J. J. Liu, M. H. Yu and W. L. Zhou, Appl. Phys. Lett., 87, 172505 (2005). https://doi.org/10.1063/1.2084321
  18. L. Zhu, M. Zhi, Z. Ye and B. Zhao, Appl. Phys. Lett., 88, 113106 (2006). https://doi.org/10.1063/1.2185609
  19. C. Xu, J. Chun, D. Kim, J.-J. Kim, B. Chon and T. Joo, Appl. Phys. Lett., 90, 083113 (2007). https://doi.org/10.1063/1.2431715
  20. R.-C. Wang, C.-P. Liu, J.-L. Huang and S.-J. Chen, Appl. Phys., Lett., 88, 023111 (2006). https://doi.org/10.1063/1.2161393
  21. X. Y. Xue, L. M. Li, H. C. Yu, Y. J. Chen, Y. G. Wang and T. H. Wang, Appl. Phys. Lett., 89, 043118 (2006). https://doi.org/10.1063/1.2236288
  22. X. Qu and D. Jia, Mater. Lett., 63, 412 (2009). https://doi.org/10.1016/j.matlet.2008.10.069
  23. S. Suwanboon, P. Amornpitoksuk, A. Haidoux and J. C. Tedenac, J. Alloys Compd., 462, 335 (2008). https://doi.org/10.1016/j.jallcom.2007.08.048
  24. C. L. Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, C. J. Huang, Y. K. Tseng and I. C. Chen, J. Electrochem. Soc., 152, G378 (2005). https://doi.org/10.1149/1.1885345
  25. B. E. Sernelius and K. F. Berggren, Phys. Rev. B, 37, 10244 (1988). https://doi.org/10.1103/physrevb.37.10244
  26. K. Tominagaa, U. N. Umezua, I. Moria, T. Ushirob, T. Morigab and I. Nakabayashib, Thin Solid Films, 334, 39 (1998).
  27. J. Ma, J. F. H. Ma and S.-Y. Li, Thin Solid Films, 279, 213 (1996). https://doi.org/10.1016/0040-6090(95)08173-9
  28. S. Zafar, F. Ferekides and D. L. Morel, J. Vac. Sci. Technol. A, 13, 2177 (1995). https://doi.org/10.1116/1.579539
  29. Y.-Z. Chiou and I.-C. Chen, IEEE Sensors, 9, 4 (2009).
  30. H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton and J. Lin, Appl. Phys. Lett., 86, 243503 (2005). https://doi.org/10.1063/1.1949707
  31. Y.-K. Tseng, I.-N. Lin, K.-S. Liu, T.-S. Lin and I.-C. Chen, J. Mater. Res., 18, 714, (2003). https://doi.org/10.1557/JMR.2003.0096
  32. J. J. Wu and S. C. Liu, Adv. Mater., 14, 215 (2002). https://doi.org/10.1002/1521-4095(20020205)14:3<215::AID-ADMA215>3.0.CO;2-J
  33. W. I. Park, D. H. Kim, S. W. Jung and G. C. Yi, Appl. Phys. Lett., 80, 4232 (2002). https://doi.org/10.1063/1.1482800
  34. S. H. Lee, T. Minegishi, J. S. Park, S. H. Park, J. S. Ha, H. J. Lee, H. J. Lee, S. Ahn, J. Kim, H. Jeon and T. Yao, Nano Lett., 8, 2419 (2008). https://doi.org/10.1021/nl801344s
  35. C. W. Yao, H. P. Wu, M. Y. Ge, L. Yang, Y. W. Zeng, Y. W. Wang and J. Z. Jiang, Mater. Lett., 61, 3416 (2007). https://doi.org/10.1016/j.matlet.2006.11.094
  36. H. Zhang, D. Yanh, Y. J. Xiangyang, M. J. Xu and D. Que, J. Phys. Chem. B, 108, 3955 (2004). https://doi.org/10.1021/jp036826f
  37. H.-M. Cheng, W.-H. Chiu, C.-H. Lee, S.-Y. Tsai and W.-F. Hsieh, J. Phys. Chem. C, 112, 16359 (2008). https://doi.org/10.1021/jp805239k
  38. N. Lepot, M. K. V. Bael, H. V. D. Rul, J. D'haen, R. Peeters, D. Franco and J. Mullens, Mater. Lett., 61, 2624 (2007). https://doi.org/10.1016/j.matlet.2006.10.025
  39. M. N. Islam, T. B. Ghosh, K. L. Chopra and H. N. Acharya, Thin Solid Films, 280, 20 (1996). https://doi.org/10.1016/0040-6090(95)08239-5
  40. S. C. Navale, V. Ravia, D. Srinivas, I. S. Mulla, S. W. Gosavi and S. K. Kulkarni, Sensor. Actuator. B Chem., 130, 668 (2008). https://doi.org/10.1016/j.snb.2007.10.055
  41. J. F. Chang, C. C. Shen and M. H. Hon, Ceram. Int., 29, 245 (2003). https://doi.org/10.1016/S0272-8842(02)00111-6
  42. S. Yamauchi, H. Handa, A. Nagayama and T. Hariu, Thin Solid Films, 345, 12 (1999). https://doi.org/10.1016/S0040-6090(99)00096-6
  43. K. Ellmer, J. Phys. D: Appl. Phys., 34, 3097 (2001). https://doi.org/10.1088/0022-3727/34/21/301