• Title/Summary/Keyword: ZnO photoluminescence

Search Result 392, Processing Time 0.025 seconds

Structural and optical properties of Ga-doped ZnO nanowires synthesized by pulsed laser deposition in furnace (갈륨 도핑된 ZnO 나노와이어의 합성과 구조적 광학적 특성 분석)

  • Kim, Chang-Eun;Ahn, Byung-Du;Jean, Kyung-Ah;Son, Hyo-Jeong;Kim, Gun-Hee;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.46-47
    • /
    • 2006
  • Ga-doped ZnO nanowires have been synthesized by pulsed laser deposition (PLD) in furnace on gold coated (0001) sapphire substrates. The effect of repetition rate on structural and optical properties of Ga-doped ZnO nanowires are investigated. By controlling repetition rate, the diameter of nanowires is varied between about 60 and 100 nm, and the length of nanowires is varied between about 2 and 4 um. The X-ray diffraction (XRD) reveals the structural defects induced by the Ga doping. The room temperature photoluminescence (PL) spectra of Ga-doped ZnO nanowires show strong UV emission between 382.394 and 385.279 nm with negligible visible emission.

  • PDF

Growth and Characterization of Vertically Aligned ZnO nanowires with different Surface morphology

  • Das, S.N.;Choi, J.H.;Kar, J.P.;Myoung, J.M.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.35.1-35.1
    • /
    • 2009
  • Vertically aligned zinc oxide (ZnO) nanorods (NRs) with different surface morphology were grown by metal organic chemical vapor deposition (MOCVD) on sapphire substrate. The films thus prepared were characterized by measuring X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) studies. To study the effect of surface morphology on wettability, the contact angle (CA) of water was measured. It was demonstrated that the CA of the deposited ZnO NRs varied between $104^{\circ}$ and $135^{\circ}$ depending upon the surface morphology. Variable temperature photoluminescence (PL) have employed to probe the exciton recombination in high density and vertically aligned ZnO Nanorod arrays. The low-temperature PL characterizes the dominant near-band-edge excitonic emissions from such nanorod arrays.

  • PDF

Relation Between Defect State and Negative Ultra-Violet Photoresponse from n-ZnO/p-Si Heterojunction Diode

  • Jo, Seong-Guk;Nam, Chang-U;Kim, Eun-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.191.2-191.2
    • /
    • 2013
  • The negative photoconductivity was frequently observed in some semiconductors. It was known that the origin of the negative photoresponse from ZnO is molecular chemisorption or the charging effect of nanoparticles in bulk matrix. However, the origin of the negative photoresponse of thin film was not still clear. One of possible explanation is due to the deep level trap scheme, which describes the origin of the negative photoresponse via defect state under illumination of light. However, the defect states below Fermi level have high capture rate by Coulomb effect, so that these states are usually filled by electrons if the defect states have donor-like character. Therefore the condition which the defect states located in below Fermi level should be partially filled by electrons make more difficult to understand of mechanism of the negative photoresponse. In this study, n-ZnO/p-Si heterojunction diodes were fabricated by UHV RF magnetron sputter. Then, some diodes show the negative photoresponse under ultra-violet light illumination. The defect state of the ZnO was analyzed by photoluminescence and deep level transient spectroscopy. To interpret the negative photoconductivity, band diagram was simulated by using SCAPS program.

  • PDF

Optical and structural properties of Al-doped CdZnO thin films with different Al concentrations (Al 도핑 농도에 따른 Al-doped Cd0.5Zn0.5O 박막의 광학적·구조적 특성)

  • Park, Hyeong-Gil;Nam, Gi-Ung;Yun, Hyeon-Sik;Kim, So-A-Ram;Kim, Min-Su;Im, Jae-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.245-246
    • /
    • 2012
  • Al 농도를 0 부터 2 at.% 까지 조절하여 도핑된 $Cd_{0.5}Zn_{0.5}O$ 박막을 석영 기판 위에 성장하였다. Al 도핑된 $Cd_{0.5}Zn_{0.5}O$ 박막의 구조적, 광학적 특성을 조사하기 위해 field-emission scanning electron microscopy, X-ray diffraction (XRD), photoluminescence (PL), 그리고 ultraviolet-visible (UV) spectroscopy을 사용하였다. 광학적 밴드갭은 Al 도핑 농도가 증가함에 따라 2.874 (0 at.%), 2.874 (0.5 at.%), 3.029 (1.0 at.%), 3.038 (1.5 at.%), 3.081 eV (2.0 at.%)로 증가하였다. Urbach energy는 도핑 농도에 따라 각각 464 (0 at.%), 585 (0.5 at.%), 571 (1.0 at.%), 600 (1.5 at.%), 470 meV (2.0 at.%)이었다. 또한, Al 농도가 증가함에 따라 $Cd_{0.5}Zn_{0.5}O$ 박막의 표면, 구조적 및 광학적 특성이 크게 변화되었다.

  • PDF

Enhancement of thermoelectric properties of MBE grown un-doped ZnO by thermal annealing

  • Khalid, Mahmood;Asghar, Muhammad;Ali, Adnan;Ajaz-Un-Nabi, M.;Arshad, M. Imran;Amin, Nasir;Hasan, M.A.
    • Advances in Energy Research
    • /
    • v.3 no.2
    • /
    • pp.117-124
    • /
    • 2015
  • In this paper, we have reported an enhancement in thermoelectric properties of un-doped zinc oxide (ZnO) grown by molecular beam epitaxy (MBE) on silicon (001) substrate by annealing treatment. The grown ZnO thin films were annealed in oxygen environment at $500^{\circ}C-800^{\circ}C$, keeping a step of $100^{\circ}C$ for one hour. Room temperature Seekbeck measurements showed that Seebeck coefficient and power factor increased from 222 to $510{\mu}V/K$ and $8.8{\times}10^{-6}$ to $2.6{\times}10^{-4}Wm^{-1}K^{-2}$ as annealing temperature increased from 500 to $800^{\circ}C$ respectively. This observation was related with the improvement of crystal structure of grown films with annealing temperature. X-ray diffraction (XRD) results demonstrated that full width half maximum (FWHM) of ZnO (002) plane decreased and crystalline size increased as the annealing temperature increased. Photoluminescence study revealed that the intensity of band edge emission increased and defect emission decreased as annealing temperature increased because the density of oxygen vacancy related donor defects decreased with annealing temperature. This argument was further justified by the Hall measurements which showed a decreasing trend of carrier concentration with annealing temperature.

Investigation on the Excitonic Luminescence Properties of ZnO Bulk Crystal (ZnO 기판의 불순물 속박 엑시톤 발광을 이용한 물성 분석)

  • Choi, Jun Seck;Ko, Dong Wan;Jeong, Min Ji;Lee, Sang Tae;Chang, Ji Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.196-200
    • /
    • 2019
  • In this study, photoluminescence (PL) analysis was performed to evaluate the optical properties of commercial ZnO substrates. Particular attention was paid to the bound exciton (BX) luminescence, which is usually the strongest emission intensity of commercial substrates. At 15 K, PL analysis revealed that the BX peak due to donor-type impurities (donor-bound-exciton; DX) dominated, while two-electron satellite (TES) emission, donor-accepter pair (DAP) emission, and LO-phonon replica emission were also observed. The impurity concentration of the ZnO substrate was determined to be $10^{15}$ to $10^{16}/cm^3$ by examination of the temperature variation of DAP, while the half width and intensity change of the luminescence revealed that the temperature change of BX can be interpreted almost the same as the analysis of free-exciton emission.

Diameter-Controllable Synthesis and Enhanced Photocatalytic Activity of Electrospun ZnO Nanofibers (전기방사를 이용하여 제조된 산화아연 나노섬유의 직경제어 및 광촉매 특성)

  • Ji, Myeong-Jun;Yoo, Jaehyun;Lee, Young-In
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.79-86
    • /
    • 2019
  • A heterogeneous photocatalytic system is attracting much interest for water and air purification because of its reusability and economical advantage. Electrospun nanofibers are also receiving immense attention for efficient photocatalysts due to their ultra-high specific surface areas and aspect ratios. In this study, ZnO nanofibers with average diameters of 71, 151 and 168 nm are successfully synthesized by facile electrospinning and a subsequent calcination process at $500^{\circ}C$ for 3 h. Their crystal structures, morphology features and optical properties are systematically characterized by X-ray diffraction, scanning electron microscopy, UV-Vis and photoluminescence spectroscopies. The photocatalytic activities of the ZnO nanofibers are evaluated by the photodegradation of a rhodamine B aqueous solution. The results reveal that the diameter of the nanofiber, controlled by changing the polymer content in the precursor solution, plays an important role in the photocatalytic activities of the synthesized ZnO nanofibers.

A comparative analysis of deep level emission in the ZnO layers deposited by various methods (다양한 방법으로 성장된 ZnO layer의 Deep level emission에 대한 비교 분석)

  • Ahn, C.H.;Kim, Y.Y.;Kim, D.C.;Kong, B.H.;Han, W.S.;Choi, M.K.;Cho, H.K.;Lee, J.H.;Kim, H.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.102-103
    • /
    • 2008
  • Magnetron Sputtering, MOCVD, Thermal Evaporation에 의해 성장된 ZnO layer에 대한 Dependency Temperature Photoluminescence (PL)를 이용하여 비교 분석을 통해 Deep level emission에 대해 연구하였다. Sputter에 의해 성장된 ZnO 박막은 Violet, Green, Orange-red 영역의 $Zn_i$, $V_o$, $O_i$의 defect에 의한 Deep level emission을 보였고, MOCVD에 의해 성장된 박막은 비교적 산소양이 낮은 성장 조건에서는 blue-green 영역에서, 산소양이 높은 조건에서의 박막은 Orange-red 영역의 Deep level emission을 보였다. Blue-green 영역에서의 emission은 온도가 증가함에 따라 다른 Barrier를 보였는데, 이는 $V_{Zn}$$V_o$에 의한 것임을 알 수 있었다. 한편, ZnO nanorods는 $V_o$에 의한 Green 영역에서의 Deep level emission을 보였다.

  • PDF

Effect of RF Powers on the Electro·optical Properties of ZnO Thin-Films (RF 출력이 ZnO 박막의 전기·광학적 특성에 미치는 영향)

  • Shin, Dongwhee;Byun, Changsob;Kim, Seontai
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.508-512
    • /
    • 2012
  • ZnO thin films were grown on a sapphire substrate by RF magnetron sputtering. The characteristics of the thin films were investigated by ellipsometry, X-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL), and Hall effect. The substrate temperature and growth time were kept constant at $200^{\circ}C$ at 30 minutes, respectively. The RF power was varied within the range of 200 to 500 W. ZnO thin films on sapphire substrate were grown with a preferred C-axis orientation along the (0002) plan; X-ray diffraction peak shifted to low angles and PL emission peak was red-shifted with increasing RF power. In addition, the electrical characteristics of the carrier density and mobility decreased and the resistivity increased. In the electrical and optical properties of ZnO thin films under variation of RF power, the crystallinity improved and the roughness increased with increasing RF power due to decreased oxygen vacancies and the presence of excess zinc above the optimal range of RF power. Consequently, the crystallinity of the ZnO thin films grown on sapphire substrate was improved with RF sputtering power; however, excess Zn resulted because of the structural, electrical, and optical properties of the ZnO thin films. Thus, excess RF power will act as a factor that degrades the device characteristics.

Optical transition dynamics in ZnO/ZnMgO multiple quantum well structures with different well widths grown on ZnO substrates

  • Li, Song-Mei;Kwon, Bong-Joon;Kwack, Ho-Sang;Jin, Li-Hua;Cho, Yong-Hoon;Park, Young-Sin;Han, Myung-Soo;Park, Young-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.121-121
    • /
    • 2010
  • ZnO is a promising material for the application of high efficiency light emitting diodes with short wavelength region for its large bandgap energy of 3.37 eV which is similar to GaN (3.39 eV) at room temperature. The large exciton binding energy of 60 meV in ZnO provide provides higher efficiency of emission for optoelectronic device applications. Several ZnO/ZnMgO multiple quantum well (MQW) structures have been grown on various substrates such as sapphire, GaN, Si, and so on. However, the achievement of high quality ZnO/ZnMgO MQW structures has been somehow limited by the use of lattice-mismatched substrates. Therefore, we propose the optical properties of ZnO/ZnMgO multiple quantum well (MQW) structures with different well widths grown on lattice-matched ZnO substrates by molecular beam epitaxy. Photoluminescence (PL) spectra show MQW emissions at 3.387 and 3.369 eV for the ZnO/ZnMgO MQW samples with well widths of 2 and 5 nm, respectively, due to the quantum confinement effect. Time-resolved PL results show an efficient photo-generated carrier transfer from the barrier to the MQWs, which leads to an increased intensity ratio of the well to barrier emissions for the ZnO/ZnMgO MQW sample with the wider width. From the power-dependent PL spectra, we observed no PL peak shift of MQW emission in both samples, indicating a negligible built-in electric field effect in the ZnO/$Zn_{0.9}Mg_{0.1}O$ MQWs grown on lattice-matched ZnO substrates.

  • PDF