Browse > Article
http://dx.doi.org/10.4313/JKEM.2019.32.3.196

Investigation on the Excitonic Luminescence Properties of ZnO Bulk Crystal  

Choi, Jun Seck (Major of Electronic Materials Engineering, Korea Maritime and Ocean University)
Ko, Dong Wan (Major of Electronic Materials Engineering, Korea Maritime and Ocean University)
Jeong, Min Ji (Major of Electronic Materials Engineering, Korea Maritime and Ocean University)
Lee, Sang Tae (Department of Offshore Plant Management, Korea Maritime and Ocean University)
Chang, Ji Ho (Major of Electronic Materials Engineering, Korea Maritime and Ocean University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.32, no.3, 2019 , pp. 196-200 More about this Journal
Abstract
In this study, photoluminescence (PL) analysis was performed to evaluate the optical properties of commercial ZnO substrates. Particular attention was paid to the bound exciton (BX) luminescence, which is usually the strongest emission intensity of commercial substrates. At 15 K, PL analysis revealed that the BX peak due to donor-type impurities (donor-bound-exciton; DX) dominated, while two-electron satellite (TES) emission, donor-accepter pair (DAP) emission, and LO-phonon replica emission were also observed. The impurity concentration of the ZnO substrate was determined to be $10^{15}$ to $10^{16}/cm^3$ by examination of the temperature variation of DAP, while the half width and intensity change of the luminescence revealed that the temperature change of BX can be interpreted almost the same as the analysis of free-exciton emission.
Keywords
ZnO substrates; Photo luminescence; Temperature dependence PL; Excitonic luminescence;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Awazu, K. Watanabe, and H. kawazoe, Jpn. J. Appl. Phys., 32, 2746 (1993). [DOI: https://doi.org/10.1143/JJAP.32.2746]   DOI
2 K. Thonke, Th. Gruber, N. Teofilov, R. Schonfelder, A. Waag, and R. Sauer, Phys. B, 308, 945 (2001). [DOI: https://doi.org/10.1016/S0921-4526(01)00877-8]   DOI
3 K. Ellmer, J. Phys. D: Appl. Phys., 33, R17 (2000). [DOI: https://doi.org/10.1088/0022-3727/33/4/201]   DOI
4 D. C. Look, B. Claflin, Y. I. Alivov, and S. J. Park, Phys. Status Solidi, A201, 2203 (2004). [DOI: https://doi.org/10.1002/pssa.200404803]
5 Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, and H. W. White, J. Cryst. Growth, 216, 330 (2000). [DOI: https://doi.org/10.1016/S0022-0248(00)00437-1]   DOI
6 Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl. Phys., 84, 3912 (1998). [DOI: https://doi.org/10.1063/1.368595]   DOI
7 D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell, and W. C. Harsch, Phy. Rev., B60, 2340 (1999). [DOI: https://doi.org/10.1103/PhysRevB.60.2340]
8 A. Bashir, P. H. Wobkenbeg, J. Smith, J. M. Ball, G. Adamopoulos, D.D.C. Bradley, and T. D. Anthopoulos, Adv. Mater., 21, 2226 (2009). [DOI: https://doi.org/10.1002/adma.200803584]   DOI
9 A. Teke, U. Ozgur, S. Dogan, X. Gu, and H. Morkoc, B. Nemeth, J. Nause, and H. O. Everitt, Phys. Rev., B70, 195207 (2004). [DOI: https://doi.org/10.1103/PhysRevB.70.195207]
10 A. Kobayashi, O. F. Sankey, and J. D. Dow, Phys. Rev., B28, 946 (1983). [DOI: https://doi.org/10.1103/PhysRevB.28.946]
11 L. Wang and N. C. Giles, J. Appl. Phys., 94, 973 (2003). [DOI: https://doi.org/10.1063/1.1586977]   DOI
12 D. H. Chi, L.T.T. Binh, N. T. Binh, L. D. Khanh, and N. N. Long, Appl. Surf. Sci., 252, 2770 (2006). [DOI: https://doi.org/10.1016/j.apsusc.2005.04.011]   DOI
13 H. Alves, D. Pfisterer, A. Zeuner, T. Riemann, J. Christen, D. M. Hofmann, and B. K. Meyer, Opt. Mater., 23, 33 (2003). [DOI: https://doi.org/10.1016/S0925-3467(03)00055-7]   DOI
14 B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Stassburg, M. Dworzak, U. Haboeck, and A. V. Rodina, Phys. StatusSolidi, B241, 231 (2004). [DOI: https://doi.org/10.1002/pssb.200301962]
15 J. I. Pankove, Optical Processes in Semiconductors (Dover Publications, New York, 1971) p. 143.
16 E. M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H. C. Semmelhack, K. H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, and M. Grundmann, Appl. Phys. Lett., 82, 3901 (2003). [DOI: https://doi.org/10.1063/1.1578694]   DOI
17 U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, J. Appl. Phys., 98, 041301 (2005). [DOI: https://doi.org/10.1063/1.1992666]   DOI
18 W. I. Park and G. C. Yi, Adv. Mater., 16, 87 (2004). [DOI: https://doi.org/10.1002/adma.200305729]   DOI