Browse > Article
http://dx.doi.org/10.3740/MRSK.2012.22.10.508

Effect of RF Powers on the Electro·optical Properties of ZnO Thin-Films  

Shin, Dongwhee (Department of Material Engineering and Research Center for Infotronic Material and Devices, Hanbat National University)
Byun, Changsob (Department of Material Engineering and Research Center for Infotronic Material and Devices, Hanbat National University)
Kim, Seontai (Department of Material Engineering and Research Center for Infotronic Material and Devices, Hanbat National University)
Publication Information
Korean Journal of Materials Research / v.22, no.10, 2012 , pp. 508-512 More about this Journal
Abstract
ZnO thin films were grown on a sapphire substrate by RF magnetron sputtering. The characteristics of the thin films were investigated by ellipsometry, X-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL), and Hall effect. The substrate temperature and growth time were kept constant at $200^{\circ}C$ at 30 minutes, respectively. The RF power was varied within the range of 200 to 500 W. ZnO thin films on sapphire substrate were grown with a preferred C-axis orientation along the (0002) plan; X-ray diffraction peak shifted to low angles and PL emission peak was red-shifted with increasing RF power. In addition, the electrical characteristics of the carrier density and mobility decreased and the resistivity increased. In the electrical and optical properties of ZnO thin films under variation of RF power, the crystallinity improved and the roughness increased with increasing RF power due to decreased oxygen vacancies and the presence of excess zinc above the optimal range of RF power. Consequently, the crystallinity of the ZnO thin films grown on sapphire substrate was improved with RF sputtering power; however, excess Zn resulted because of the structural, electrical, and optical properties of the ZnO thin films. Thus, excess RF power will act as a factor that degrades the device characteristics.
Keywords
ZnO; RF magnetron sputter; hall; PL.;
Citations & Related Records
연도 인용수 순위
  • Reference
1 U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Do an, V. Avrutin, S. j. Cho and H. Morkoc, J. Appl. Phys., 98, 041301 (2005).   DOI   ScienceOn
2 K. Maeda, M. Sato, I. Niikura and T. Fukuda, Semicond. Sci. Technol., 20, S49 (2005).   DOI   ScienceOn
3 Y. S. Choi, J. W. Kang, D. K. Hwang and S. J. Park, IEEE. Trans. Electron. Dev., 57, 26 (2010).   DOI   ScienceOn
4 I. S. Jeong, J. H. Kim and S. Im, Appl. Phys. Lett., 83, 2946 (2003).   DOI   ScienceOn
5 Y. I. Alivov, U. Ozgur, S. Do an, D. Johnstone, V. Avrutin, N. Onojima, C. Liu, J. Xie, Q. Fan and H. Morkoc, Appl. Phys. Lett., 86, 241108 (2005).   DOI   ScienceOn
6 S. P. Chang, C. Y. Lu, S. J. Chang, Y. Z. Chiou, C. L. Hsu, P. Y. Su and T. J. Hsueh, Jpn. J. Appl. Phys., 50, 01AJ05 (2011).   DOI
7 Y. Liu, C. R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen and M. Wraback, J. Electron. Mater., 29, 69 (2000).   DOI
8 A. El-Shaer, A. Che Mofor, A. Bakin, M. Kreye and A. Waag, Superlattices Microstruct., 38, 265 (2005).   DOI   ScienceOn
9 M. K. Wu, Y. T. Shih, W. C. Li, H. C. Chen, M. J. Chen, H. Kuan, J. R. Yang and M. Shiojiri, IEEE. Photon. Tech. Lett., 20, 1772 (2008).   DOI   ScienceOn
10 M. J. Brett and R. R. Parsons, J. Mater. Sci., 22, 3611 (1987).   DOI   ScienceOn
11 P. R. Guduru, E. Chason and L. B. Freund, J. Mech. Phys. Solid., 51, 2127 (2003).   DOI   ScienceOn
12 B. D. Cullity, Elements of X-ray Diffraction, 1st ed., p. 88, Addison-Wesley, MA, USA (1956).
13 W. T. Lim and C. H. Lee, Thin Solid Films, 353, 12 (1999).   DOI   ScienceOn
14 K. Wasa, M. Kitabatake and H. Adachi, Thin Film Materials Technology, p. 72, Springer & William Andrew Pub., NY, USA (2004).
15 A. B. Djuriši and Y. H. Leung, Small, 2, 944 (2006).   DOI   ScienceOn