Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.2.79

Diameter-Controllable Synthesis and Enhanced Photocatalytic Activity of Electrospun ZnO Nanofibers  

Ji, Myeong-Jun (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Yoo, Jaehyun (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Lee, Young-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.29, no.2, 2019 , pp. 79-86 More about this Journal
Abstract
A heterogeneous photocatalytic system is attracting much interest for water and air purification because of its reusability and economical advantage. Electrospun nanofibers are also receiving immense attention for efficient photocatalysts due to their ultra-high specific surface areas and aspect ratios. In this study, ZnO nanofibers with average diameters of 71, 151 and 168 nm are successfully synthesized by facile electrospinning and a subsequent calcination process at $500^{\circ}C$ for 3 h. Their crystal structures, morphology features and optical properties are systematically characterized by X-ray diffraction, scanning electron microscopy, UV-Vis and photoluminescence spectroscopies. The photocatalytic activities of the ZnO nanofibers are evaluated by the photodegradation of a rhodamine B aqueous solution. The results reveal that the diameter of the nanofiber, controlled by changing the polymer content in the precursor solution, plays an important role in the photocatalytic activities of the synthesized ZnO nanofibers.
Keywords
ZnO; nanofibers; electrospinning; diameter; photocatalyst;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. N. Chong, B. Jin, C. W.K. Chow and C. Saint, Water Res., 44, 2997 (2010).   DOI
2 U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho and H. Morkoc, J. Appl. Phys., 98, 041301 (2005).   DOI
3 R. Georgekutty, M. K. Seery and S. C. Pillai, J. Phys. Chem. C, 112, 13563 (2008).   DOI
4 S. B. Khan, M. Faisal, M. M. Rahman and A. Jamal, Talanta, 85, 943 (2011).   DOI
5 L. Fu and Z. Fu, Ceram. Int., 41, 2492 (2015).   DOI
6 T.-J. Kuo, C.-N. Lin, C.-L. Kuo and M. H. Huang, Chem. Mater., 19, 5143 (2007).   DOI
7 F. Lu, W. Cai and Y. Zhang, Adv. Funct. Mater., 18, 1047 (2008).   DOI
8 O. Akhavan, ACS Nano, 4, 4174 (2010).   DOI
9 X. Ge, K. Hong, J. Zhang, L. Liu and M. Xu, Mater. Lett., 139, 119 (2015).   DOI
10 D. Lin, H. Wu, R. Zhang and W. Pan, Chem. Mater., 21, 3479 (2009).   DOI
11 P. Singh, K. Mondal and A. Sharma, J. Colloid Interface Sci., 394, 208 (2013).   DOI
12 S. An, B. N. Joshi, M. W. Lee, N. Y. Kim and S. S. Yoon, Appl. Surf. Sci., 294, 24 (2014).   DOI
13 K. V. Kumar, K. Porkodi and F. Rocha, Catal. Commun., 9, 82 (2008).   DOI
14 H. Li, W. Zhang, B. Li and W. Pan, J. Am. Ceram. Soc., 93, 2503 (2010).   DOI