DOI QR코드

DOI QR Code

Investigation on the Excitonic Luminescence Properties of ZnO Bulk Crystal

ZnO 기판의 불순물 속박 엑시톤 발광을 이용한 물성 분석

  • Choi, Jun Seck (Major of Electronic Materials Engineering, Korea Maritime and Ocean University) ;
  • Ko, Dong Wan (Major of Electronic Materials Engineering, Korea Maritime and Ocean University) ;
  • Jeong, Min Ji (Major of Electronic Materials Engineering, Korea Maritime and Ocean University) ;
  • Lee, Sang Tae (Department of Offshore Plant Management, Korea Maritime and Ocean University) ;
  • Chang, Ji Ho (Major of Electronic Materials Engineering, Korea Maritime and Ocean University)
  • 최준석 (한국해양대학교 전자소재공학전공) ;
  • 고동완 (한국해양대학교 전자소재공학전공) ;
  • 정민지 (한국해양대학교 전자소재공학전공) ;
  • 이상태 (한국해양대학교 해양플랜트운영학과) ;
  • 장지호 (한국해양대학교 전자소재공학전공)
  • Received : 2019.02.21
  • Accepted : 2019.03.31
  • Published : 2019.05.01

Abstract

In this study, photoluminescence (PL) analysis was performed to evaluate the optical properties of commercial ZnO substrates. Particular attention was paid to the bound exciton (BX) luminescence, which is usually the strongest emission intensity of commercial substrates. At 15 K, PL analysis revealed that the BX peak due to donor-type impurities (donor-bound-exciton; DX) dominated, while two-electron satellite (TES) emission, donor-accepter pair (DAP) emission, and LO-phonon replica emission were also observed. The impurity concentration of the ZnO substrate was determined to be $10^{15}$ to $10^{16}/cm^3$ by examination of the temperature variation of DAP, while the half width and intensity change of the luminescence revealed that the temperature change of BX can be interpreted almost the same as the analysis of free-exciton emission.

Keywords

JJJRCC_2019_v32n3_196_f0001.png 이미지

Fig. 1. 15K PL of ZnO substrate. Free excition (FX), bound excition (DX), Two-electron satellite, donor-acceptor-pair (DAP), and LO-phonon replicas were observed.

JJJRCC_2019_v32n3_196_f0002.png 이미지

Fig. 2. Temperature dependent PL spectrum of ZnO substrate from 15 K to 310 K.

JJJRCC_2019_v32n3_196_f0003.png 이미지

Fig. 3. Dependency of the temperature change of the FX, D0X, and TES peak position of the ZnO substrate.

JJJRCC_2019_v32n3_196_f0004.png 이미지

Fig. 4. FWHM according to the temperature variation of the DX peak of ZnO substrate.

References

  1. K. Awazu, K. Watanabe, and H. kawazoe, Jpn. J. Appl. Phys., 32, 2746 (1993). [DOI: https://doi.org/10.1143/JJAP.32.2746]
  2. K. Thonke, Th. Gruber, N. Teofilov, R. Schonfelder, A. Waag, and R. Sauer, Phys. B, 308, 945 (2001). [DOI: https://doi.org/10.1016/S0921-4526(01)00877-8]
  3. K. Ellmer, J. Phys. D: Appl. Phys., 33, R17 (2000). [DOI: https://doi.org/10.1088/0022-3727/33/4/201]
  4. D. C. Look, B. Claflin, Y. I. Alivov, and S. J. Park, Phys. Status Solidi, A201, 2203 (2004). [DOI: https://doi.org/10.1002/pssa.200404803]
  5. Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, and H. W. White, J. Cryst. Growth, 216, 330 (2000). [DOI: https://doi.org/10.1016/S0022-0248(00)00437-1]
  6. Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl. Phys., 84, 3912 (1998). [DOI: https://doi.org/10.1063/1.368595]
  7. D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell, and W. C. Harsch, Phy. Rev., B60, 2340 (1999). [DOI: https://doi.org/10.1103/PhysRevB.60.2340]
  8. A. Bashir, P. H. Wobkenbeg, J. Smith, J. M. Ball, G. Adamopoulos, D.D.C. Bradley, and T. D. Anthopoulos, Adv. Mater., 21, 2226 (2009). [DOI: https://doi.org/10.1002/adma.200803584]
  9. W. I. Park and G. C. Yi, Adv. Mater., 16, 87 (2004). [DOI: https://doi.org/10.1002/adma.200305729]
  10. A. Teke, U. Ozgur, S. Dogan, X. Gu, and H. Morkoc, B. Nemeth, J. Nause, and H. O. Everitt, Phys. Rev., B70, 195207 (2004). [DOI: https://doi.org/10.1103/PhysRevB.70.195207]
  11. A. Kobayashi, O. F. Sankey, and J. D. Dow, Phys. Rev., B28, 946 (1983). [DOI: https://doi.org/10.1103/PhysRevB.28.946]
  12. L. Wang and N. C. Giles, J. Appl. Phys., 94, 973 (2003). [DOI: https://doi.org/10.1063/1.1586977]
  13. D. H. Chi, L.T.T. Binh, N. T. Binh, L. D. Khanh, and N. N. Long, Appl. Surf. Sci., 252, 2770 (2006). [DOI: https://doi.org/10.1016/j.apsusc.2005.04.011]
  14. H. Alves, D. Pfisterer, A. Zeuner, T. Riemann, J. Christen, D. M. Hofmann, and B. K. Meyer, Opt. Mater., 23, 33 (2003). [DOI: https://doi.org/10.1016/S0925-3467(03)00055-7]
  15. B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Stassburg, M. Dworzak, U. Haboeck, and A. V. Rodina, Phys. StatusSolidi, B241, 231 (2004). [DOI: https://doi.org/10.1002/pssb.200301962]
  16. J. I. Pankove, Optical Processes in Semiconductors (Dover Publications, New York, 1971) p. 143.
  17. E. M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H. C. Semmelhack, K. H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, and M. Grundmann, Appl. Phys. Lett., 82, 3901 (2003). [DOI: https://doi.org/10.1063/1.1578694]
  18. U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, J. Appl. Phys., 98, 041301 (2005). [DOI: https://doi.org/10.1063/1.1992666]