• Title/Summary/Keyword: ZnO doping

Search Result 316, Processing Time 0.024 seconds

Luminescence properties of $(Y,\;Zn)_2O_3$:$Eu^{3+}$ red phosphor as the effect of Zn ion (Zn ion의 영향에 따른 $(Y,\;Zn)_2O_3$:$Eu^{3+}$ 적색 형광체의 발광특성)

  • Song, Y.H.;Moon, J.W.;Park, W.J.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.6
    • /
    • pp.253-257
    • /
    • 2008
  • To enhance the luminescence properties, the red phosphor composed of $(Y,\;Zn)_2O_3$:$Eu^{3+}$ as doping concentration of Zn ion is synthesized at $1200^{\circ}C$ for 6 hrs in air atmosphere by conventional solid reaction method. As a result of the red phosphor $(Y,\;Zn)_2O_3$:$Eu^{3+}$ is measured X-ray diffraction (XRD), The main peak is nearly corresponded to the same as JCPDS card (No. 41-1105). When the doping concentration of Zn ion is more than 5 mol%, However, the ZnO peak is showed by XRD analysis. Therefore, when the doping concentration of Zn ion is less than 5 mol%, the Zn ion is well mixed in $Y_2O_3$ structure without the impurity phases. The photoluminescence (PL) properties is shown as this phosphor is excited in 254 nm region and the highest emission spectra of $(Y,\;Zn)_2O_3$:$Eu^{3+}$ has shown in 612 nm region because of a typical energy transition ($^5D_0{\rightarrow}^7F_2$) of $Eu^{3+}$ ion. As the doping concentration of Zn ion is more than 10 mol%, the emission peak is suddenly decreased. when the highest emission peak as doping concentration of Zn ion is shown, the composition of this phosphor is $(Y_{0.95},\;Zn_{0.05})_2O_3$:$Eu^{3+}_{0.075}$ and the particle size analyzed by FE-SEM is confirmed from 0.4 to $3{\mu}m$.

Influence of the Fluorine-doping Concentration on Nanocrystalline ZnO Thin Films Deposited by Sol-gel Process

  • Yoon, Hyunsik;Kim, Ikhyun;Kang, Daeho;Kim, Soaram;Kim, Jin Soo;Son, Jeong-Sik;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.204.2-204.2
    • /
    • 2013
  • Wide band gap II-VI semiconductors have attracted the interest of many research groups during the past few years due to the possibility of their applications in light-emitting diodes and laser diodes. Among the II-VI semiconductors, ZnO is an important optoelectronic device material for use in the violet and blue regions because of its wide direct band gap (Eg ~3.37 eV) and large exciton binding energy (60 meV). F-doped ZnO (FZO) and undoped ZnO thin films were grown onto quartz substrate by the sol-gel spin-coating method. The doping level in the solution, designated by F/Zn atomic ratio of was varied from 0 to 5 in 1 steps. To investigate the effects of the structure and optical properties of FZO thin films were investigated using X-ray diffraction (XRD), UV-visible spectroscopy, and photoluminescence (PL). In the XRD, the residual stress, FWHM, bond length, and average grain size were changed with increasing the doping concentration. For the PL spectra, the high INBE/IDLE ratio of the FZO thin films doping concentration at 1 at.% than the other samples.

  • PDF

Ultra Sensitive Detection of H2 in ZnO QD-based Sensors (ZnO양자점 기반 센서의 초고감도 수소 검지 특성)

  • Lee, Hyun-Sook;Kim, Wonkyung;Lee, Wooyoung
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.105-111
    • /
    • 2020
  • Interest and demand for hydrogen sensors are increasing in the field of H2 leakage detection during storage/transport/use and detection of H2 dissolved in transformer oil for safety issues as well as in the field of breath analysis for non-invasively diagnosing a number of disease states for a healthy life. In this study, various ZnO-based sensors were synthesized by controlling the reduction in crystallite size, decoration of Pt nanoparticles, doping of electron donating atoms, and doping of various atoms with different ionic radii. The sensing response of the various prepared ZnO-based nanoparticles and quantum dots (QDs) for 10 ppm H2 was investigated. Among the samples, the smallest-sized (3.5 nm) In3+-doped ZnO QDs showed the best sensing response, which is superior to those in previously reported hydrogen sensors based on semiconducting metal oxides. The higher sensing response of In-doped ZnO QDs is attributed to the synergic effects of the increased number of oxygen vacancies, higher optical band gap, and larger specific surface area.

CO Gas-Sensor Based on Pt-Functionalized Mg-Doped ZnO Nanowires

  • Jin, Chang-Hyun;Park, Sung-Hoon;Kim, Hyun-Su;An, So-Yeon;Lee, Chong-Mu
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1993-1997
    • /
    • 2012
  • Mg-doped ZnO one-dimensional (1D) nanostrutures were synthesized by using a thermal evaporation technique. The morphology, crystal structure, and sensing properties of the Mg-doped ZnO nanostructures functionalized with Pt to CO gas at $100^{\circ}C$ were examined. The diameters of the 1D nanostructures ranged from 80 to 120 nm and that the lengths were up to a few tens of micrometers. The gas sensors fabricated from multiple networked Mg-doped ZnO nanowires functionalized with Pt showed enhanced electrical response to CO gas. The responses of the nanowires were improved by approximately 70, 69, 111, and 81 times at CO concentrations of 10, 25, 50, and 100 ppm, respectively. Both the response and recovery times of the nanowire sensor for CO gas sensing were not nearly changed by Pt functionalization. It also appeared that the Mg doping concentration did not influence the sensing properties of ZnO nanowires as strongly as Pt-functionalization. In addition, the mechanism for the enhancement in the CO gas sensing properties of Mg-doped ZnO nanowires by Pt functionalization is discussed.

Varistor Application of Cr-doped ZnO-Sb2O3 Ceramics (Cr을 첨가한 ZnO-Sb2O3 세라믹스의 바리스터 응용)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.11
    • /
    • pp.854-858
    • /
    • 2010
  • In this study, we have investigated the effects of Cr dopant on the sintering and electrical properties of ZnO-$Sb_2O_3$ (ZS) ceramics for varistor application. Spinel phases including $\alpha-$ and $\beta$-type was formed at ZS system and $\alpha$-spinel was stabilized by Cr doping in ZS system. Densification of ZS and ZSCr system was retarded to $1000^{\circ}C$ by the formation of spinel at $800^{\circ}C$. The morphology and its distribution of spinel phases in ZS system was homogeneous but disturbed by Cr doping. In ZSCr the densification of ZnO compared with ZS system was more retarded by low concentration of Zn interstitial defects induced by Cr doping in addition to the effect of spinel phase formation. The defects in each system were identified as attractive coulombic center (ZS: 0.13 eV, ZSCr: 0.12 eV) and singly charged oxygen vacancy $V_0^{\cdot}$ (ZSCr: 0.33 eV). In all ZS and ZSCr system have week varistor behavior by the formation of double Schottky barrier at grain boundary but its stability of barrier was very sensitive to sintering temperature.

Optimization of the deposition condition on hetero-epitaxial As-doped ZnO thin films by pulsed laser deposition (PLD를 이용한 hetero-epitaxial As-doped ZnO 박막 증착 조건의 최적화)

  • Lee, Hong-Chan;Jung, Youn-Sik;Choi, Won-Kook;Park, Hun;Shim, Kwang-Bo;Oh, Young-Jei
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.207-210
    • /
    • 2005
  • In order to investigate the influence of the homo buffer layer on the microstructure of the ZnO thin film, undoped ZnO buffer layer were deposited on sapphire (0001) substrates by ultra high vaccum pulsed laser deposition (UHV-PLD) and molecular beam eiptaxy (MBE). After high temperature annealing at $600^{\circ}C$ for 30min, undoped ZnO buffer layer was deposited with various oxygen pressure (35~350mtorr). On the grown layer of undoped ZnO, Arsenic-doped(l, 3wt%) ZnO layers were deposited by UHV-PLD. The optical property of the ZnO was analyzed by the photoluminescence (PL) measurement. From $\Theta-2\Theta$ XRD analysis, all the films showed strong (0002) diffraction peak, and this indicates that the grains grew uniformly with the c-axis perpendicular to the substrate surface. Field emission scanning electron microscope (FE-SEM) revealed that microstructures of the ZnO were varied with oxygen pressure, arsenic doping level, and the deposition method of undoped ZnO buffer layers. The films became denser and smoother in the cases of introducing MBE-buffer layer and lower oxygen pressure during As-doped ZnO deposition. Higher As-doping concentration enhanced the columnar-character of the films.

  • PDF

Chracteristics of TCO with dopant in $In_2O_3-ZnO-SnO_2$

  • Won, Ju-Yeon;Choe, Byeong-Hyeon;Ji, Mi-Jeong;Seo, Han;Nam, Tae-Bang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.79-79
    • /
    • 2009
  • Samples of Ta-doped in $In_2O_3-ZnO-SnO_2$(IZTO) with a doping level up to 4wt% were sintered at $1600^{\circ}C$ in $O_2$. The crystal phase of the samples was identified by an X-ray diffraction experiment. apparent density and porosity with sintered temperature from $1500^{\circ}C$ to $1640^{\circ}C$ are mesured by archimedes method. For each sample, the specific resistivity was determined. samples of sintered at $1600^{\circ}C$ had the highest density and lowest porousity and The Ta 0.25-wt%-doped IZTO ceramics had the lowest resistivity.

  • PDF

Resistive Switching Characteristic of ZnO Memtransistor Device by a Proton Doping Effect (수소 도핑효과에 의한 ZnO 맴트랜지스터 소자특성)

  • Son, Ki-Hoon;Kang, Kyung-Mun;Park, Hyung-Ho;Lee, Hong-Sub
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.1
    • /
    • pp.31-35
    • /
    • 2020
  • This study demonstrates metal-oxide based memtransistor device and the gate tunable memristive characteristic using atomic layer deposition (ALD) and ZnO n-type oxide semiconductor. We fabricated a memtransistor device having channel width 70 ㎛, channel length 5 ㎛, back gate, using 40 nm thick ZnO thin film, and measured gate-tunable memristive characteristics at each gate voltage (50V, 30V, 10V, 0V, -10V, -30V, -50V) under humidity of 40%, 50%, 60%, and 70% respectively, in order to investigate the relation between a memristive characteristic and hydrogen doping effect on the ZnO memtransistor device. The electron mobility and gate controllability of memtransistor device decreased with an increase of humidity due to increased electron carrier concentration by hydrogen doping effect. The gate-tunable memristive characteristic was observed under humidity of 60% 70%. Resistive switching ratio increased with an increase of humidity while it loses gate controllability. Consequently, we could obtain both gate controllability and the large resistive switching ratio under humidity of 60%.

The Effects of Mn-doping and Electrode Material on the Resistive Switching Characteristics of ZnOxS1-x Thin Films on Plastic

  • Han, Yong;Cho, Kyoungah;Park, Sukhyung;Kim, Sangsig
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.1
    • /
    • pp.24-27
    • /
    • 2014
  • In this study, the effects of Mn-doping and the electrode materials on the memory characteristics of $ZnO_xS_{1-x}$ resistive random access memory (ReRAM) devices on plastic are investigated. Compared with the undoped Al/$ZnO_xS_{1-x}$/Au and Al/$ZnO_xS_{1-x}$/Cu devices, the Mn-doped ones show a relatively higher ratio of the high resistance state (HRS) to low resistance state (LRS), and narrower resistance distributions in both states. For the $ZnO_xS_{1-x}$ devices with bottom electrodes of Cu, more stable conducting filament paths are formed near these electrodes, due to the relatively higher affinity of copper to sulfur, compared with the devices with bottom electrodes of Au, so that the distributions of the set and reset voltages get narrower. For the Al/$ZnO_xS_{1-x}$/Cu device, the ratio of the HRS to LRS is above $10^6$, and the memory characteristics are maintained for $10^4$ sec, which values are comparable to those of ReRAM devices on Si or glass substrates.