Browse > Article
http://dx.doi.org/10.4313/TEEM.2014.15.1.24

The Effects of Mn-doping and Electrode Material on the Resistive Switching Characteristics of ZnOxS1-x Thin Films on Plastic  

Han, Yong (Department of Nano Semiconductor Engineering, Korea University, Hynix Semiconductor Inc.)
Cho, Kyoungah (Department of Electrical Engineering, Korea University)
Park, Sukhyung (Department of Electrical Engineering, Korea University)
Kim, Sangsig (Department of Nano Semiconductor Engineering and Department of Electrical Engineering, Korea University)
Publication Information
Transactions on Electrical and Electronic Materials / v.15, no.1, 2014 , pp. 24-27 More about this Journal
Abstract
In this study, the effects of Mn-doping and the electrode materials on the memory characteristics of $ZnO_xS_{1-x}$ resistive random access memory (ReRAM) devices on plastic are investigated. Compared with the undoped Al/$ZnO_xS_{1-x}$/Au and Al/$ZnO_xS_{1-x}$/Cu devices, the Mn-doped ones show a relatively higher ratio of the high resistance state (HRS) to low resistance state (LRS), and narrower resistance distributions in both states. For the $ZnO_xS_{1-x}$ devices with bottom electrodes of Cu, more stable conducting filament paths are formed near these electrodes, due to the relatively higher affinity of copper to sulfur, compared with the devices with bottom electrodes of Au, so that the distributions of the set and reset voltages get narrower. For the Al/$ZnO_xS_{1-x}$/Cu device, the ratio of the HRS to LRS is above $10^6$, and the memory characteristics are maintained for $10^4$ sec, which values are comparable to those of ReRAM devices on Si or glass substrates.
Keywords
$ZnO_xS_{1-x}$; Resistive switching; Doping effect; Unipolar;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. H. Cheng, F. S. Yeh and A. Chin, Adv. Mater. 23, 902 (2011) [DOI: http://dx.doi.org/10.1002/adma.201002946].   DOI   ScienceOn
2 K. Kinoshita, T. Okutani, H. Tanaka, T. Hinoki, H. Agura, K. Yazawa, K. Ohmi and S. Kishida, Solid-State Electron 58, 48 (2011) [DOI: http://dx.doi.org/10.1016/j.sse.2010.11.026].   DOI
3 S. H. Lee, W. G. Kim, S. W. Rhee and K. J. Yong, J. Electrochem. Soc. 155, H92 (2008) [DOI: http://dx.doi.org/10.1149/1.2814153].   DOI
4 S. K. Hong, J. E. Kim, S. O. Kim, S. Y. Choi and B. J. Cho, IEEE Elec. Dev. Lett. 31, 1005 (2010) [DOI: http://dx.doi.org/10.1109/LED.2010.2053695].   DOI
5 J. Yun, K. Cho, B. Park, B. H. Park and S. Kim, J. Mater. Chem. 19, 2082 (2009) [DOI: http://dx.doi.org/10.1039/B817062B].   DOI
6 S. Y. Wang, C. W. Huang, D. Y. Lee, T. Y. Tseng and T. Chang, J. Appl. Phys. 108, 114110 (2010) [DOI: http://dx.doi.org/10.1063/1.3518514] .   DOI
7 P. Gonon, M. Mougenot, C. Vallee, C. Jorel, V. Jousseaume, H. Grampeix and F. E. Kamel, J. Appl. Phys. 107, 074507 (2010) [DOI: http://dx.doi.org/10.1063/1.3357283].   DOI
8 S. Kim, H. Moon, D. Gupta, S. Yoo and Y. K. Choi, IEEE Trans. Elec. Dev. 56, 696 (2009) [DOI: http://dx.doi.org/10.1109/TED.2009.2012522].   DOI   ScienceOn
9 Z. Q. Wang, H. Y. Xu, X. H. Li, X. T. Zhang, Y. X. Liu and Y. Liu, IEEE Elec. Dev. Lett. 32, 1442 (2011) [DOI: http://dx.doi.org/10.1109/LED.2011.2162311] .   DOI
10 Y. Han, K. Cho and S. Kim, J. Nanosci. Nanotechnol. 12, 5732 (2012) [DOI: http://dx.doi.org/10.1166/jnn.2012.6230].   DOI
11 B. K. Meyer, A. Polity, B. Farangis, Y. He, D. Hasselkamp, T. H. Kramer and C. Wang, Appl. Phys. Lett. 85, 4929 (2010) [DOI: http://dx.doi.org/10.1063/1.1825053].   DOI   ScienceOn
12 L. F. Liu, J. F. Kang, N. Xu, X. Sun, C. Chen, B. Sun, Y. Wang, X. Y. Liu, X. Zhang and R. Q. Han, Jpn. J. Appl. Phys. 47, 2701 (2008) [DOI: http://dx.doi.org/10.1143/JJAP.47.2701].   DOI
13 H. Y. Peng, G. P. Li, J. Y. Ye, Z. P. Wei, Z. Zhang, D. D. Wang, G. Z. Xing and T. Wu, Appl. Phys. Lett. 96, 192113 (2010) [DOI: http://dx.doi.org/10.1063/1.3428365].   DOI   ScienceOn
14 H. Peng and T. Wu, Appl. Phys. Lett. 95, 152106 (2009) [DOI: http://dx.doi.org/10.1063/1.3249630].   DOI
15 J. G. Kim, H. D. Na, J. H. Oh, D. H. Ko and H. C. Sohn, J. Vac. Sci. Technol. B. 28, 1143 (2010) [DOI: http://dx.doi.org/10.1116/1.3501109].   DOI
16 K. A. Bogle, M. N. Bachhav, M. S. Deo, N. Valanoor and S. B. Ogale, Appl. Phys. Lett. 95, 203502 (2009) [DOI: http://dx.doi.org/10.1063/1.3263713].   DOI
17 Y. C. Yang, F. Pan, Q. Liu, M. Liu and F. Zeng, Nano Lett. 9, 1636 (2009) [DOI: http://dx.doi.org/10.1021/nl900006g].   DOI   ScienceOn
18 X. Chen, G. Wu and D. Bao, Appl. Phys. Lett. 93, 093501 (2008) [DOI: http://dx.doi.org/10.1063/1.2978158].   DOI
19 W. C. Chien, Y. C. Chen, E. K. Lai, Y. D. Yao, P. Lin, S. F. Hong, J. Gong, T. H. Chou, H. M. Lin, M. N. Chang, Y. H. Shih, K. Y. Hsieh and R. Liu IEEE Elec. Dev. Lett. 36, 126 (2010) [DOI: http://dx.doi.org/10.1109/LED.2009.2037593].   DOI
20 J. Y. Son and Y. H. Shin, Appl. Phys. Lett. 92, 222106 (2008) [DOI: http://dx.doi.org/10.1063/1.2931087].   DOI
21 J. Han, A. M. R. Senos and P. Q. Mantas, J. Eur. Ceram. Soc. 22, 1653 (2002) [DOI: http://dx.doi.org/10.1016/S0955-2219(01)00484-8].   DOI
22 K. M. Kim, B. J. Choi, Y. C. Shin, S. Choi and C. S. Huang, Appl. Phys. Lett. 91, 012907 (2007) [DOI: http://dx.doi.org/10.1063/1.2749846].   DOI   ScienceOn
23 C. Vallee, P. Gonon, C. Jorel and F. E. Kamel, Appl. Phys. Lett. 96, 233504 (2010) [DOI: http://dx.doi.org/10.1063/1.3447795].   DOI
24 C. Y. Lin, M. H. Lin, M. C. Wu, C. H. Lin and T. Y. Tseng, IEEE Elec. Dev. Lett. 29, 1108 (2008) [DOI: http://dx.doi.org/10.1109/LED.2008.2002879].   DOI
25 M. Y. Chan, T. Zhang, V. Ho and P. S. Lee, Microelectron Eng. 85, 2420 (2008) [DOI: http://dx.doi.org/10.1016/j.mee.2008.09.021].   DOI