DOI QR코드

DOI QR Code

Resistive Switching Characteristic of ZnO Memtransistor Device by a Proton Doping Effect

수소 도핑효과에 의한 ZnO 맴트랜지스터 소자특성

  • Son, Ki-Hoon (Department of Materials Science & Engineering, Kangwon National University) ;
  • Kang, Kyung-Mun (Department of Materials Science and Engineering, Yonsei University) ;
  • Park, Hyung-Ho (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Hong-Sub (Department of Materials Science & Engineering, Kangwon National University)
  • 손기훈 (강원대학교 재료공학과) ;
  • 강경문 (연세대학교 신소재공학과) ;
  • 박형호 (연세대학교 신소재공학과) ;
  • 이홍섭 (강원대학교 재료공학과)
  • Received : 2019.12.06
  • Accepted : 2020.03.25
  • Published : 2020.03.30

Abstract

This study demonstrates metal-oxide based memtransistor device and the gate tunable memristive characteristic using atomic layer deposition (ALD) and ZnO n-type oxide semiconductor. We fabricated a memtransistor device having channel width 70 ㎛, channel length 5 ㎛, back gate, using 40 nm thick ZnO thin film, and measured gate-tunable memristive characteristics at each gate voltage (50V, 30V, 10V, 0V, -10V, -30V, -50V) under humidity of 40%, 50%, 60%, and 70% respectively, in order to investigate the relation between a memristive characteristic and hydrogen doping effect on the ZnO memtransistor device. The electron mobility and gate controllability of memtransistor device decreased with an increase of humidity due to increased electron carrier concentration by hydrogen doping effect. The gate-tunable memristive characteristic was observed under humidity of 60% 70%. Resistive switching ratio increased with an increase of humidity while it loses gate controllability. Consequently, we could obtain both gate controllability and the large resistive switching ratio under humidity of 60%.

원자층 증착법(ALD: atomic layer deposition)으로 성장된 ZnO n-type 산화물반도체를 이용하여 three terminal memristor (memtransistor) 소자를 제작하여 습도에 따른 그 특성을 관찰하였다. 40 nm 두께의 ZnO 박막을 이용하여 channel width 70 ㎛, length 5 ㎛, back gate 구조의 memtransistor 소자를 제작하여 습도에 (40%, 50%, 60%, 70%) 따른 gate tunable memristive 특성변화를 관찰하였다. 습도가 높아질수록 electron mobility와 gate controllability가 감소하여 수소도핑효과에 의한 carrier 농도가 증가하는 거동의 output curve가 관찰되었다. 60%, 70%의 습도에서 memristive 거동이 관찰되었으며 습도가 높아질수록 on/off ratio는 증가하는 반면 gate controllability가 감소하였다. 60% 습도에서 가장 우수한 특성의 gate tunable memristive 특성을 얻을 수 있었다.

Keywords

References

  1. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The missing memristor found", Nature, 453(7191), 80 (2008). https://doi.org/10.1038/nature06932
  2. A. Sawa, "Resistive switching in transition metal oxides", Mater. Today, 11(6), 28 (2008). https://doi.org/10.1016/S1369-7021(08)70119-6
  3. R. Waser, R. Dittmann, G. Staikov, and K. Szot, "Redox-Based Resistive Switching Memories-Nanoionic Mechanisms, Prospects, and Challenges", Adv. Mater., 21(25-26), 2632 (2009). https://doi.org/10.1002/adma.200900375
  4. A. Chanthbouala, V. Garcia, R. O. Cherifi, K. Bouzehouane, S. Fusil, X. Moya, S. Xavier, H. Yamada, C. Deranlot, N. D. Mathur, M. Bibes, A. Barthelemy, and J. Grollier, "A ferroelectric memristor", Nat. Mater., 11, 860 (2012). https://doi.org/10.1038/nmat3415
  5. J. Lee, S. Choi, C. Lee, Y. Kang, and D. Kim, "GeSbTe deposition for the PRAM application", Appl. Surf. Sci., 253(8), 3969 (2007). https://doi.org/10.1016/j.apsusc.2006.08.044
  6. Z. Li and S. Zhang, "Domain-wall dynamics driven by adiabatic spin-transfer torques", Phys. Rev. B, 70(2), 024417 (2004). https://doi.org/10.1103/PhysRevB.70.024417
  7. H. S. Lee, S. G. Choi, H.-H. Park, and M. J. Rozenberg, "A new route to the Mott-Hubbard metal-insulator transition: Strong correlations effects in $Pr_{0.7}Ca_{0.3}MnO_3$", Sci. Rep., 3, 1704 (2013). https://doi.org/10.1038/srep01704
  8. H.-Y. Kim, S.-J. Park, and G. E. Jang, "Microstructure and Electrical Properties of $SrBi_2Ta_2O_9$ Ferroelectric Thin Films Prepared by RF Magnetron Sputtering Method", J. Microelectron. Packag. Soc., 6(2), 51 (1999).
  9. J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, and R. S. Williams, "Memristive switching mechanism for metal/oxide/metal nanodevices", Nat. nanotechnol., 3(7), 429 (2008). https://doi.org/10.1038/nnano.2008.160
  10. H. S. Lee, "The Latest Trends and Issues of Anion-based Memristor", J. Microelectron. Packag. Soc., 26(1), 1 (2019). https://doi.org/10.6117/KMEPS.2019.26.1.001
  11. H. S. Lee, H.-H. Park, and M. J. Rozenberg, "Manganitebased memristive heterojunction with tunable non-linear I-V characteristics", Nanoscale, 7(15), 6444 (2015). https://doi.org/10.1039/C5NR00861A
  12. V. K. Sangwan, H.-S. Lee, H. Bergeron, I. Balla, M. E. Beck, K.-S. Chen, and M. C. Hersam, "Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide", Nature, 554(7693), 500 (2018). https://doi.org/10.1038/nature25747
  13. Y. Yang, H. Du, Q. Xue, X. Wei, Z. Yang, C. Xu, D. Lin, W. Jie, and J. Hao, "Three-terminal memtransistors based on two-dimensional layered gallium selenide nanosheets for potential low-power electronics applications", Nano Energy, 57, 566 (2019). https://doi.org/10.1016/j.nanoen.2018.12.057
  14. L. Wang, W. Liao, S. L., Wong, Z. G. Yu, S. Li, Y.-F. Lim, X. Feng, W. C. Tan, X. Huang, L. Chen, L. Liu, J. Chen, X. Gong, C. Zhu, X. Liu, Y.-W. Zhang, D. Chi, and K.-W. Ang, "Artificial Synapses Based on Multiterminal Memtransistors for Neuromorphic Application", Adv. Funct. Mater., 29(25), 1901106 (2019). https://doi.org/10.1002/adfm.201901106
  15. V. Lujala, J. Skarp, M. Tammenmaa, and T. Suntola, "Atomic layer epitaxy growth of doped zinc oxide thin films from organometals", Appl. Surf. Sci., 82-83, 34 (1994). https://doi.org/10.1016/0169-4332(94)90192-9
  16. L.-Y. Chen, W.-H. Chen, J.-J. Wang, and F. C.-N. Hong, "Hydrogen-doped high conductivity ZnO films deposited by radio-frequency magnetron sputtering", Appl. Phys. Lett., 85(23), 5628 (2004). https://doi.org/10.1063/1.1835991
  17. Z. Zhou, K. Kato, T. Komaki, M. Yoshino, H. Yukawa, M. Morinaga, and K. Morita, "Effects of dopants and hydrogen on the electrical conductivity of ZnO", J. Eur. Ceram. Soc., 24(1), 139 (2004). https://doi.org/10.1016/S0955-2219(03)00336-4