Browse > Article
http://dx.doi.org/10.4313/JKEM.2010.23.11.854

Varistor Application of Cr-doped ZnO-Sb2O3 Ceramics  

Hong, Youn-Woo (Bio-IT Convergence Center, Korea Institute of Ceramic Engineering and Technology)
Shin, Hyo-Soon (Bio-IT Convergence Center, Korea Institute of Ceramic Engineering and Technology)
Yeo, Dong-Hun (Bio-IT Convergence Center, Korea Institute of Ceramic Engineering and Technology)
Kim, Jin-Ho (School of Materials Science and Engineering, Kyungpook National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.23, no.11, 2010 , pp. 854-858 More about this Journal
Abstract
In this study, we have investigated the effects of Cr dopant on the sintering and electrical properties of ZnO-$Sb_2O_3$ (ZS) ceramics for varistor application. Spinel phases including $\alpha-$ and $\beta$-type was formed at ZS system and $\alpha$-spinel was stabilized by Cr doping in ZS system. Densification of ZS and ZSCr system was retarded to $1000^{\circ}C$ by the formation of spinel at $800^{\circ}C$. The morphology and its distribution of spinel phases in ZS system was homogeneous but disturbed by Cr doping. In ZSCr the densification of ZnO compared with ZS system was more retarded by low concentration of Zn interstitial defects induced by Cr doping in addition to the effect of spinel phase formation. The defects in each system were identified as attractive coulombic center (ZS: 0.13 eV, ZSCr: 0.12 eV) and singly charged oxygen vacancy $V_0^{\cdot}$ (ZSCr: 0.33 eV). In all ZS and ZSCr system have week varistor behavior by the formation of double Schottky barrier at grain boundary but its stability of barrier was very sensitive to sintering temperature.
Keywords
ZnO; $Sb_2O_3$; $Cr_2O_3$; Sintering; Electrical properties;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 D. R. Clarke, J. Am. Ceram. Soc. 82, 485 (1999).   DOI
2 T. Senda and R. C. Bradt, J. Am. Ceram. Soc. 74, 1296 (1991).   DOI
3 T. Takemura, M. Kobayashi, Y. Takada, and K. Sato, J. Am. Ceram. Soc. 70, 237 (1987).   DOI
4 Z. Brankovic, G. Brankovic, D. Poleti, and J. A. Varela, Ceram. Int. 27, 115 (2001).   DOI
5 F. Greuter and G. Blatter, Semicond. Sci. Technol. 5, 111 (1990).   DOI
6 Y.-W. Hong, H.-S. Shin, D.-H. Yeo, and J.-H. Kim, J. KIEEME 23, 368 (2010).   과학기술학회마을
7 Y.-W. Hong, H.-S. Shin, D.-H. Yeo, J.-H. Kim, and J.-H. Kim, J. KIEEME 21, 738 (2008).   과학기술학회마을
8 D. Poleti, D. Vasovic, L. Karanovic, and Z. Brankovic, J. Solid State Chem. 112, 39 (1994).   DOI
9 T. Asokan and R. Freer, J. Mater. Sci. 25, 2447 (1990).   DOI
10 K. H. Bather, D. Hinz, N. Mattern, M. Bitterlich, and W. Bruckner, Phys. Stat. Solidi A 61, K9 (1980).   DOI
11 Y. W .Hong and J. H. Kim, Ceram. Int. 30, 1301 (2004).   DOI
12 E. Olsson and G. L. Dunlop, J. Appl. Phys. 66, 3666 (1989).   DOI
13 A. F. Wells, Structural Inorganic Chemistry (Clarendon Press, Oxford, 1984) p. 876.
14 V. Krasevec, M. Trontelj, and L. Golic, J. Am. Ceram. Soc. 74, 760 (1991).   DOI
15 N. N. Greenwood and A. Earnshaw, Chemistry of the Elements (Butterworth-Heinemann, Oxford, 2001) p. 547.
16 J. Kim, T. Kimura, and T. Yamaguchi, J. Mater. Sci. 24, 213 (1989).   DOI
17 B. A. Haskell, S. J. Souri, and M. A. Helfand, J. Am. Ceram. Soc. 82, 2106 (1999).   DOI
18 S. Ezhilvalavan and T. R. N. Kutty, Appl. Phys. Lett. 68, 2693 (1996).   DOI
19 J. Bruley, U. Bremer, and V. Krasevac, J. Am. Ceram. Soc. 75, 3127 (1992).   DOI
20 M. A. McCoy, R. W. Grimes, and W. E. Lee, J. Mater. Res. 11, 2009 (1996).   DOI
21 J. Kim, T. K. Kimura, and T. Yamaguchi, J. Am. Ceram. Soc. 72, 1390 (1989).   DOI