• Title/Summary/Keyword: ZnO:N films

Search Result 219, Processing Time 0.028 seconds

Study of the Effects of ZnO Intermediate Layer on Photoluminescence Properties of Magnetron Sputtering Grown GaN Thin Films (ZnO Intermediate Layer가 GaN 박막의 PL 특성에 미치는 영향 연구)

  • 성웅제;이용일;박천일;최우범;성만영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.574-577
    • /
    • 2001
  • GaN thin films on sapphire were grown by rf magnetron sputtering with ZnO buffer layer. The dependence of GaN film quality on ZnO buffer layer was investigated by X-ray diffraction(XRD). The improved film quality has been obtained by using thin ZnO buffer layer. Using Auger electron spectroscopy(AES), it was observed that the annealing process improved the GaN film quality. The surface roughness according to the annealing temperatures(700, 900, 1100$^{\circ}C$) were investigated by AFM(atomic force microscopy) and it was confirmed that the crystallization was improved by increasing the annealing temperature. Photoluminescence at 8K shows a near-band-edge peak at 3.2eV with no deep level emission.

  • PDF

Control of electrical types in the P-doped ZnO thin film by Ar/$O_2$ gas flow ratio

  • Kim, Young-Yi;Han, Won-Suk;Kong, Bo-Hyun;Cho, Hyung-Koun;Kim, Jun-Ho;Lee, Ho-Seoung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.11-11
    • /
    • 2008
  • ZnO has a very large exciton binding energy (60 meV) as well as thermal and chemical stability, which are expected to allow efficient excitonic emission, even at room temperature. ZnO based electronic devices have attracted increasing interest as the backplanes for applications in the next-generation displays, such as active-matrix liquid crystal displays (AMLCDs) and active-matrix organic light emitting diodes (AMOLEDs), and in solid state lighting systems as a substitution for GaN based light emitting diodes (LEDs). Most of these electronic devices employ the electrical behavior of n-type semiconducting active oxides due to the difficulty in obtaining a p-type film with long-term stability and high performance. p-type ZnO films can be produced by substituting group V elements (N, P, and As) for the O sites or group I elements (Li, Na, and K) for Zn sites. However, the achievement of p-type ZnO is a difficult task due to self-compensation induced from intrinsic donor defects, such as O vacancies (Vo) and Zn interstitials ($Zn_i$), or an unintentional extrinsic donor such as H. Phosphorus (P) doped ZnO thin films were grown on c-sapphire substrates by radio frequency magnetron sputtering with various Ar/ $O_2$ gas ratios. Control of the electrical types in the P-doped ZnO films was achieved by varying the gas ratio with out post-annealing. The P-doped ZnO films grown at a Ar/ $O_2$ ratio of 3/1 showed p-type conductivity with a hole concentration and hole mobility of $10^{-17}cm^{-3}$ and $2.5cm^2/V{\cdot}s$, respectively. X-ray diffraction showed that the ZnO (0002) peak shifted to lower angle due to the positioning of $p^{3-}$ ions with a smaller ionic radius in the $O^{2-}$ sites. This indicates that a p-type mechanism was due to the substitutional Po. The low-temperature photoluminescence of the p-type ZnO films showed p-type related neutral acceptor-bound exciton emission. The p-ZnO/n-Si heterojunction LEO showed typical rectification behavior, which confirmed the p-type characteristics of the ZnO films in the as-deposited status, despite the deep-level related electroluminescence emission.

  • PDF

Study of the Nitrogen-Beam Irradiation Effects on ALD-ZnO Films (ALD로 성장된 ZnO박막에 대한 질소이온 조사효과)

  • Kim, H.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.5
    • /
    • pp.384-389
    • /
    • 2009
  • ZnO, a wurtzite lattice structure, has attracted much attention as a promising material for light-emitting diodes (LEDs) due to highly efficient UV emission resulting from its large band gap of 3.37 eV, large exciton binding energy of 60 meV, and low power threshold for optical pumping at room temperature. For the realization of LEDs, both n-type ZnO and p-type ZnO are required. Now, n-type ZnO for practical applications is available; however, p-type ZnO still has many drawbacks. In this study, ZnO films were grown on glass substrates by using atomic layer deposition (ALD) and the ZnO films were irradiated by nitrogen ion beams (20 keV, $10^{13}{\sim}10^{15}ions/cm^2$). The effects of nitrogen-beam irradiation on the ZnO structure as well as the electrical property were investigated by using fieldemission scanning electron microscopy (FESEM) and Hall-effect measurement.

Fabrication and characterization of n-IZO / p-Si and p-ZnO:(In, N) / n-Si thin film hetero-junctions by dc magnetron sputtering

  • Dao, Anh Tuan;Phan, Thi Kieu Loan;Nguyen, Van Hieu;Le, Vu Tuan Hung
    • Journal of IKEEE
    • /
    • v.17 no.2
    • /
    • pp.182-188
    • /
    • 2013
  • Using a ceramic target ZnO:In with In doping concentration of 2%, hetero-junctions of n-ZnO:In/p-Si and p-ZnO:(In, N)/n-Si were fabricated by depositing Indium doped n - type ZnO (ZnO:In or IZO) and Indium-nitrogen co-doped p - type ZnO (ZnO:(In, N)) films on wafers of p-Si (100) and n-Si (100) by DC magnetron sputtering, respectively. These films with the best electrical and optical properties were then obtained. The micro-structural, optical and electrical properties of the n-type and p-type semiconductor thinfilms were characterized by X-ray diffraction (XRD), RBS, UV-vis; four-point probe resistance and room-temperature Hall effect measurements, respectively. Typical rectifying behaviors of p-n junction were observed by the current-voltage (I-V) measurement. It shows fairly good rectifying behavior with the fact that the ideality factor and the saturation current of diode are n=11.5, Is=1.5108.10-7 (A) for n-ZnO:In/p-Si hetero-jucntion; n=10.14, Is=3.2689.10-5 (A) for p-ZnO:(In, N)/n-Si, respectively. These results demonstrated the formation of a diode between n-type thin film and p-Si, as well as between p-type thin film and n-Si..

The study of diode characteristics on the doping concentration of ZnO films using the Si Substrate (Si 기판위에 형성된 ZnO 박막의 도핑 농도에 따른 다이오드 특성 연구)

  • Lee, J.H.;Jang, B.L.;Lee, J.H.;Kim, J.J.;Kim, H.S.;Jang, N.W.;Cho, H.K.;Kong, B.H.;Lee, H.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.216-217
    • /
    • 2008
  • Zinc-oxide films were deposited by pulsed laser deposition (PLD) technique using doped ZnO target (mixed $In_2O_3$ 0.1, 0.3, 0.6 at. % - atomic percentage) on the p-type Si(111) substrate. A little Indium has added at the n-ZnO films for the electron concentration control and enhanced the electrical properties. Also, post thermal annealed ZnO films are shown an enhanced structural and controled electron concentration by the annealing condition for the hetero junction diode of a better emitting characteristics. The electrical and the diode characteristics of the ZnO films were investigated by using Hall effect measurement and current-voltage measurement.

  • PDF

X-Ray Absorption Spectroscopic Study of 120 MeV $Ag^{9+}$ Ion-Irradiated N-Doped ZnO Thin Films

  • Gautam, Sanjeev;Lim, Weon Cheol;Kang, Hee Kyung;Lee, Ki Soo;Song, Jaebong;Song, Jonghan;Asokan, K.;Chae, Keun Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.315-315
    • /
    • 2013
  • We report the electronic structure modification in the swift heavy ion (SHI) irradiated N-doped ZnO thin films prepared by RF sputtering from ZnO target in different ratio of Ar/$N_2$ gas mixture using highly pure $N_2$ gas. The different N-ZnO thin lms were then irradiated with 120 MeV Ag ion beam with different doses ranging from $1{\times}10^{11}$ to $5{\times}10^{12}$ ions/$cm^2$ and characterized by XRD and near edge X-ray absorption ne structure (NEXAFS) at N and O K-edges. The NEXAFS measurements provide direct evidence of O 2p and Zn 3d orbital hybridization and also the bonding of N ions with Zn and O ions. The minimum value of resistivity of $790{\Omega}cm$, a Hall mobility of $22cm^2V^-1s^-1$ and the carrier concentration of $3.6{\times}10^{14}cm^{-3}$ were yielded at 75% $N_2$. X-ray diffraction (XRD) measurements revealed that N-doped ZnO films had the preferential orientation of (002) plane for all samples, while crystallinity start decreasing at 32.5% $N_2$. The average crystallite size varies from 5.7 to 8.2 nm for 75% and then decreases to 7.8 nm for 80% $Ar:N_2$ ratio.

  • PDF

Characteristics of As-doped ZnO thin films with various buffer layer temperatures prepared by PLD method (PLD법을 이용한 Buffer Layer 증착온도에 따른 As-doped ZnO 박막의 특성)

  • Lee, Hong-Chan;Shim, Kwang-Bo;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.84-89
    • /
    • 2006
  • Highly concentrated p-type ZnO thin films can be obtained by doping of N, P and As elements. In this study, undoped ZnO buffer layers were prepared on a (0001) sapphire substrate by a ultra high vaccum pulsed laser deposition(UHV-PLD) method. ZnO buffer layers were deposited with various deposition temperature($400{\sim}700^{\circ}C$) at 350 mtorr of oxygen working pressure. Arsenic doped(1 wt%) ZnO thin films were deposited on the ZnO buffer layers by UHV-PLD. Crystallinity of the samples were evaluated by X-ray diffractometer and scanning electron microscopy. Optical, electrical properties of the ZnO thin films were estimated by photoluminescence(PL) and Hall measurements. The optimal condition of the undoped ZnO buffer layer for the deposition of As-doped ZnO thin films was at $600^{\circ}C$ of deposition temperature.

The study of UV emission in ZnO thin films fabricated by Pulsed Laser Deposition (레이저 증착법에 의해 제작된 ZnO 박막의 UV 발광특성연구)

  • 배상혁;이상렬;진범준;우현수;임성일
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.95-98
    • /
    • 1999
  • ZnO thin films on (001) sapphire substrates have been deposited by pulsed laser deposition technique using a Nd:YAG laser with the wavelength of 355 nm. In order to investigate the effect of the deposition conditions on the properties of ZnO thin films at an oxygen pressure of 350 mTorr, the experiment has been Performed at various substrate temperatures in the range of 20$0^{\circ}C$ to $700^{\circ}C$. According to XRD, (002) textured ZnO films of high crystalline quality have been obtained and the intensity of UV emission was the highest at 40$0^{\circ}C$ substrate temperature.

  • PDF

The Characteristics of Multi-layer Structure LED with MgxZn1-xO Thin Films (MgxZn1-xO를 활용한 Multi-layer 구조 LED 특성에 관한 연구)

  • Son, Ji-Hoon;Kim, Sang-Hyun;Jang, Nak-Won;Kim, Hong-Seong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.10
    • /
    • pp.811-816
    • /
    • 2012
  • The effect of co-sputtering condition on the structural properties of $Mg_xZn_{1-x}O$ thin films grown by RF magnetron co-sputtering system was investigated for manufacturing ZnO/MgZnO structure LED. $Mg_xZn_{1-x}O$ thin films were grown with ZnO and MgO target varying RF power. Structural properties were investigated by X-ray diffraction (XRD) and Energy dispersive spectroscopy (EDS). The ZnO thin films have sufficient crystallinity on the high RF power. As RF power of ZnO target increased, the contents of MgO in the $Mg_xZn_{1-x}O$ film decreased. LED was manufactured using ZnO/MgZnO multi-layer on p-GaN/$Al_2O_3$ substrate. Threshold voltage of multi-layer LED was appeared at 8 V, and it was luminesced at wave length of 550 nm.

The Effects of Oxygen Partial Pressure and Post-annealing on the Properties of ZnO-SnO2 Thin Film Transistors (ZnO-SnO2 투명박막트랜지스터의 특성에 미치는 산소분압 및 후속열처리의 영향)

  • Ma, Tae-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.4
    • /
    • pp.304-308
    • /
    • 2012
  • Transparent thin film transistors (TTFT) were fabricated using the rf magnetron sputtered ZnO-$SnO_2$ films as active layers. A ceramic target whose Zn atomic ratio to Sn is 2:1 was employed for the deposition of ZnO-$SnO_2$ films. To study the post-annealing effects on the properties of TTFT, ZnO-$SnO_2$ films were annealed at $200^{\circ}C$ or $400^{\circ}C$ for 5 min before In deposition for source and drain electrodes. Oxygen was added into chamber during sputtering to raise the resistivity of ZnO-$SnO_2$ films. The effects of oxygen addition on the properties of TTFT were also investigated. 100 nm $Si_3N_4$ film grown on 100 nm $SiO_2$ film was used as gate dielectrics. The mobility, $I_{on}/I_{off}$, interface state density etc. were obtained from the transfer characteristics of ZnO-$SnO_2$ TTFTs.