• 제목/요약/키워드: Zn precursor

검색결과 184건 처리시간 0.031초

Synthesis and Characterization of ZnO/TiO2 Photocatalyst Decorated with PbS QDs for the Degradation of Aniline Blue Solution

  • Lee, Jong-Ho;Ahn, Hong-Joo;Youn, Jeong-Il;Kim, Young-Jig;Suh, Su-Jeong;Oh, Han-Jun
    • 대한금속재료학회지
    • /
    • 제56권12호
    • /
    • pp.900-909
    • /
    • 2018
  • A $ZnO/TiO_2$ photocatalyst decorated with PbS quantum dots (QDs) was synthesized to achieve high photocatalytic efficiency for the decomposition of dye in aqueous media. A $TiO_2$ porous layer, as a precursor photocatalyst, was fabricated using micro-arc oxidation, and exhibited irregular porous cells with anatase and rutile crystalline structures. Then, a ZnO-deposited $TiO_2$ catalyst was fabricated using a zinc acetate solution, and PbS QDs were uniformly deposited on the surface of the $ZnO/TiO_2$ photocatalyst using the successive ionic layer adsorption and reaction (SILAR) technique. For the PbS $QDs/ZnO/TiO_2$ photocatalyst, ZnO and PbS nanoparticles are uniformly precipitated on the $TiO_2$ surface. However, the diameters of the PbS particles were very fine, and their shape and distribution were relatively more homogeneous compared to the ZnO particles on the $TiO_2$ surface. The PbS QDs on the $TiO_2$ surface can induce changes in band gap energy due to the quantum confinement effect. The effective band gap of the PbS QDs was calculated to be 1.43 eV. To evaluate their photocatalytic properties, Aniline blue decomposition tests were performed. The presence of ZnO and PbS nanoparticles on the $TiO_2$ catalysts enhanced photoactivity by improving the absorption of visible light. The PbS $QDs/ZnO/TiO_2$ heterojunction photocatalyst showed a higher Aniline blue decomposition rate and photocatalytic activity, due to the quantum size effect of the PbS nanoparticles, and the more efficient transport of charge carriers.

Regulation of precursor solution concentration for In-Zn oxide thin film transistors

  • Chen, Yanping;He, Zhongyuan;Li, Yaogang;Zhang, Qinghong;Hou, Chengyi;Wang, Hongzhi
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1300-1305
    • /
    • 2018
  • The tunable electronic performance of the solution-processed semiconductor metal oxide is of great significance for the printing electronics. In current work, transparent thin-film transistors (TFTs) with indium-zinc oxide (IZO) were fabricated as active layer by a simple eco-friendly aqueous route. The aqueous precursor solution is composed of water without any other organic additives and the IZO films are amorphous revealed by the X-ray diffraction (XRD). With systematic studies of atomic force microscopy (AFM), X-ray photoemission spectroscopy (XPS) and the semiconductor property characterizations, it was revealed that the electrical performance of the IZO TFTs is dependent on the concentration of precursor solution. As well, the optimum preparation process was obtained. The concentrations induced the regulation of the electronic performance was clearly demonstrated with a proposed mechanism. The results are expected to be beneficial for development of solution-processed metal oxide TFTs.

Fabrication of a Cu2ZnSn(S,Se)4 thin film solar cell with 9.24% efficiency from a sputtered metallic precursor by using S and Se pellets

  • 강명길;홍창우;윤재호;곽지혜;안승규;문종하;김진혁
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.86.2-86.2
    • /
    • 2015
  • Cu2ZnSn(S,Se)4 thin film solar cells have been fabricated using sputtered Cu/Sn/Zn metallic precursors on Mo coated sodalime glass substrate without using a toxic H2Se and H2S atmosphere. Cu/Sn/Zn metallic precursors with various thicknesses were prepared using DC magnetron sputtering process at room temperature. As-deposited metallic precursors were sulfo-selenized inside a graphite box containing S and Se pellets using rapid thermal processing furnace at various sulfur to selenium (S/Se) compositional ratio. Thin film solar cells were fabricated after sulfo-selenization process using a 65 nm CdS buffer, a 40 nm intrinsic ZnO, a 400 nm Al doped ZnO, and Al/Ni top metal contact. Effects of sulfur to selenium (S/Se) compositional ratio on the microstructure, crystallinity, electrical properties, and cell efficiencies have been studied using X-ray diffraction, Raman spectroscopy, field emission scanning electron microscope, I-V measurement system, solar simulator, quantum efficiency measurement system, and time resolved photoluminescence spectrometer. Our fabricated Cu2ZnSn(S,Se)4 thin film solar cell shows the best conversion efficiency of 9.24 % (Voc : 454.6 mV, Jsc : 32.14 mA/cm2, FF : 63.29 %, and active area : 0.433 cm2), which is the highest efficiency among Cu2ZnSn(S,Se)4 thin film solar cells prepared using sputter deposited metallic precursors and without using a toxic H2Se gas. Details about other experimental results will be discussed during the presentation.

  • PDF

Columbite Precursor법에 의해 제조된 PNN-PZN-PZT계 세라믹의 유전 및 전기적 특성 (Dieletric and Electric properties of PNN-PZN-PZT Ceramic Using Columbite Precursor Method)

  • 이수호;손무헌;사공건
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 C
    • /
    • pp.1028-1030
    • /
    • 1995
  • In the fields of the optics, precise machine, semiconducting processing, the micro-positioning actuators are required for the control of position in the submicron range. In this study, $Pb(Ni_{1/3}Nb_{2/3})O_3-Pb({Zn}_{1/3}Nb_{2/3})O_3-Pb({Zr}_{1/2}Ti_{1/2})O_3$ ceramics were fabricated by solid state reaction. The structural, dielectric and electric properties were investigated for sintering condition. The specimen sintered at $1,150(^\circ}C)$ for 1hr, had the highest density and dielectric contant. The resistivity, dielectric and density were increased with increasing PZN contents.

  • PDF

Zinc oxide seed layer 형성 조건 제어를 통한 나노 구조체 형상 조절 연구

  • 이재혁;김성현;이경일;이철승;조진우;김선민
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.386-386
    • /
    • 2011
  • sol-gel 및 hydrothermal growth method를 이용한 zinc oxide nanorod는 제작 시 고가의 장비가 필요치 않기에 저비용 대면적 박막을 제작하는데 적합하지만 rod들의 array 및 density 조절에서 어려움을 가지고 있다. 본 연구에서는 이러한 nanorod array 형상 조절을 위하여 zinc oxide seed layer 형성 과정 중 precursor solution에 이종 나노 입자를 첨가하였다. 첨가한 seed precursor solution을 spin coating한 이후에 후처리 하여 hydrothermal method를 이용해 성장시켰다. 합성한 rod들을 optic과 FE-SEM으로 측정해 rod들의 density 변화를 확인할 수 있었다.

  • PDF

초음파 분무법으로 제조한 ZnO:Al 박막의 전기 및 광학적 특성 (The electrical and optical properties of ZnO:Al films Prepared by ultrasonic spray Pyrolysis)

  • Lee, Soo-Chul;Moon, Hyun-Yeol;Lee, In-Chan;Ma, Tae-Young
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.283-286
    • /
    • 1999
  • Transparent conductive aluminum-doped ZnO(AZO) films Were prepared by a ultrasonic spray pyrolysis method at the substrate temperature below 23$0^{\circ}C$. A vertical type hot wall furnace was used as a reactor in the deposition system. Zinc acetate dissolved in methanol was selected as a precursor. The substrate temperature was varied from 18$0^{\circ}C$to 24$0^{\circ}C$. Aluminum (Al) was doped into ZnO films by incorporating anhydrous aluminum chloride (AlCl$_3$) in the zinc acetate solution. The proportion of the Al in the starting solution was varied from 0 wt % to 3.0 wt %. The crystallographic properties and surface morphologies of the films were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The resistivity of the films was measured by the Van der Pauw method, and the mobility and carrier concentration were obtained through the Hall effect measurements Transmittance was measured in the visible region. The effects of substrate temperature and aluminum content in the starling solution on the structural and electrical properties of the AZO films are discussed

  • PDF

전기방사법에 의한 NiZn 페라이트 나노섬유의 제조 및 특성 연구 (Preparation and Characterization of NiZn-Ferrite Nanofibers Fabricated by Electrospinning Process)

  • 주용휘;남중희;조정호;전명표;김병익;고태경
    • 한국세라믹학회지
    • /
    • 제46권1호
    • /
    • pp.74-80
    • /
    • 2009
  • Electrospinning process is the useful and unique method to produce nanofibers from metal precursor and polymer solution by controlled viscosity. In this study, the NiZn ferrite nanofibers were prepared by electrospinning with a aqueous metal salts/polymer solution that contained polyvinyl pyrrolidone and Fe (III) chloride, Ni (II) acetate tetrahydrate and zinc acetate dihydrate in N,N-dimethylformamide. The applied electric field and spurting rate for spinning conditions were 10 kV, 2 ml/h, respectively. The obtained fibers were treated at $250^{\circ}C$ for 1 h to remove the polymer. Finally, the NiZn ferrite fibers were calcined at $600^{\circ}C$ for 3 h and annealed at $900{\sim}1200^{\circ}C$ in air. By tuning the viscosity of batch solution before electrospinning, we were able to control the microstructure of NiZn ferrite fiber in the range of $150{\sim}500\;nm$ at 770 cP. The primary particle size in $600^{\circ}C$ calcined ferrite fiber was about 10 nm. The properties of those NiZn ferrite fibers were determined from X-ray diffraction analysis, electron microscopy, energy dispersive spectroscopy, Fourier transform infrared spectroscopy, thermal analysis, and magnetic measurement.

착체중합법에 의한 $ZnWO_4$ 나노분말의 저온합성 (Low temperature synthesis of $ZnWO_4$ nanopowders using polymeric complex precursor)

  • 류정호;임창성;오근호
    • 한국결정성장학회지
    • /
    • 제12권3호
    • /
    • pp.133-137
    • /
    • 2002
  • 착체중합법을 사용하여 nano-size의 $ZnWO_4$ powder를 저온에서 합성하였다. 금속이온물질로서 zinc acetate와 tungstic acid를 사용하였으며 용매는 de-ionized water를 사용하였다. $300^{\circ}C$ 부터 $600^{\circ}C$의 온도 영역에서 하소한 분말에 대해 열분해 및 결정화 과정, 분말의 형상, 입도 변화 양상을 분석하였다. 일반적인 고상합성 시에 필요한 온도보다 현저히 낮은 온도인 $400^{\circ}C$에서 $ZnWO_4$상이 생성되었으며, $600^{\circ}C$에서 완전한 결정상을 얻을 수 있었다. 합성된 분말은 $400^{\circ}C$에서 원형과 silk-worm 형태가 혼합된 입자 형상을 나타내었고 $500^{\circ}C$에서 보다 균질한 양상을 나타내었다. 합성된 분말의 입자 크기는 $400^{\circ}C$~$600^{\circ}C$의 온도영역에서 17.62~24.71 nm 정도로 매우 미세하였으며, 하소 온도가 증가함에 따라 분말의 결정상과 입도가 증가하는 것을 확인하였다.

메탄올 생산용 고활성 Cu/ZnO 촉매 합성방법 (Preparation of Active Cu/ZnO-based Catalysts for Methanol Synthesis)

  • 정천우;서영웅
    • 공업화학
    • /
    • 제27권6호
    • /
    • pp.555-564
    • /
    • 2016
  • 대기 중 이산화탄소의 재활용 기술과 재생에너지에 의한 물 분해 기술의 접목이 최근 가능해지면서 메탄올은 많은 관심을 받고 있다. 경제성이 유리하도록 메탄올 경제를 실현하기 위해서는 고활성 메탄올 합성 촉매를 제조하여야 하며, 이를 위해서는 논리적인 접근법이 필요하다. 공침법을 통해 제조하는 Cu/ZnO 기반의 촉매는 침전, 숙성, 여과, 세척, 건조, 소성, 환원 등의 복잡한 단계로 제조되며, 100년의 역사를 가지고 있음에도 불구하고 최근에야 침전 화학과 촉매 나노구조에 대한 기초적인 이해가 이루어지고 있다. 이에 본 고에서는 단계별로 합성 변수가 침전, 소성, 환원상태 물질의 물성에 미치는 영향에 대한 최근 결과들을 리뷰하고, 화학적 기억 효과라고 부르는 이들 물성들과 최종 촉매의 활성 사이의 관련성을 논의하였다. 제조 변수별 설명은 메탄올 합성을 위한 Cu/ZnO 기반 고활성 촉매를 제조하는 방법에 초점이 맞추어져 있다. 논의된 합성 전략은 공침법을 기반으로 하는 타 금속 또는 금속 산화물 담지 촉매의 제조에 활용 가능할 것으로 판단된다.

Fruits Extracts Mediated Synthesis of Zinc Oxide Nanoparticles Using Rubus coreanus and its Catalytic Activity for Degradation of Industrial Dye

  • Rupa, Esrat Jahan;Gokulanathan, Anandapadmanaban;Ahn, Jong-Chan;Mathiyalagan, Ramya;Markus, Josua;Elizabeth, Jimenez Perez Zuly;Soshnikova, Veronika;Kim, Yeon-Ju;Yang, Deok-Chun
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 춘계학술발표회
    • /
    • pp.93-93
    • /
    • 2018
  • This study disclosed the aqueous fruits extract of Rubus coreanus as a sustainable agent for the synthesis of Rubus coreanus zinc oxide nanoparticle (Rc-ZnO Nps) using as a reducing and capping precursor for co-precipitation method. The development of Rc-ZnO was assured by white precipitated powder and analyzed by spectroscopic and analytical instruments. The UV-visible (UV-Vis) studies indicate the maximum absorbance at 357nm which confirmed the formation of ZnO Nps and the purity, functional group and monodispersity were assured by field emission transmission electron microscopy (FE-TEM), Fourier Transform Infrared (FTIR) Spectroscopy and dynamic light scattering (DLS). The X-ray powder diffraction (XRD) data revealed the Nps is 23.16 nm in size, crystalline in nature and possess hexagonal wurtzite structure. The Rc-ZnO Nps were subjected for catalytic studies. The Malachite Green dye was degraded by Rc- ZnO NPs in both dark and light (100 W tungsten) conditions and it degraded about 90% at 4 hours observation in both cases. The biodegradable, low cost Rc-ZnO NPs can be a better weapon for waste water treatment.

  • PDF