Browse > Article
http://dx.doi.org/10.3365/KJMM.2018.56.12.900

Synthesis and Characterization of ZnO/TiO2 Photocatalyst Decorated with PbS QDs for the Degradation of Aniline Blue Solution  

Lee, Jong-Ho (Department of Chemistry, Hanseo University)
Ahn, Hong-Joo (Nucl. Chem. Research Division, Korea Atomic Energy Research Institute)
Youn, Jeong-Il (School of Advanced Materials Engineering, Sungkyunkwan University)
Kim, Young-Jig (School of Advanced Materials Engineering, Sungkyunkwan University)
Suh, Su-Jeong (School of Advanced Materials Engineering, Sungkyunkwan University)
Oh, Han-Jun (Department of Materials Science, Hanseo University)
Publication Information
Korean Journal of Metals and Materials / v.56, no.12, 2018 , pp. 900-909 More about this Journal
Abstract
A $ZnO/TiO_2$ photocatalyst decorated with PbS quantum dots (QDs) was synthesized to achieve high photocatalytic efficiency for the decomposition of dye in aqueous media. A $TiO_2$ porous layer, as a precursor photocatalyst, was fabricated using micro-arc oxidation, and exhibited irregular porous cells with anatase and rutile crystalline structures. Then, a ZnO-deposited $TiO_2$ catalyst was fabricated using a zinc acetate solution, and PbS QDs were uniformly deposited on the surface of the $ZnO/TiO_2$ photocatalyst using the successive ionic layer adsorption and reaction (SILAR) technique. For the PbS $QDs/ZnO/TiO_2$ photocatalyst, ZnO and PbS nanoparticles are uniformly precipitated on the $TiO_2$ surface. However, the diameters of the PbS particles were very fine, and their shape and distribution were relatively more homogeneous compared to the ZnO particles on the $TiO_2$ surface. The PbS QDs on the $TiO_2$ surface can induce changes in band gap energy due to the quantum confinement effect. The effective band gap of the PbS QDs was calculated to be 1.43 eV. To evaluate their photocatalytic properties, Aniline blue decomposition tests were performed. The presence of ZnO and PbS nanoparticles on the $TiO_2$ catalysts enhanced photoactivity by improving the absorption of visible light. The PbS $QDs/ZnO/TiO_2$ heterojunction photocatalyst showed a higher Aniline blue decomposition rate and photocatalytic activity, due to the quantum size effect of the PbS nanoparticles, and the more efficient transport of charge carriers.
Keywords
photocatalyst; micro-arc oxidation; PbS quantum dots; nanocomposite; titanium dioxide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. L. Xie, Z. X. Li, Z. G. Xu, and H. L. Zhang, Electrochem. Commun. 13, 788 (2011).   DOI
2 D. H. Yeon, S. M. Lee, Y. H. Jo, J. Moon, and Y. S. Cho, J. Mater. Chem. A 2, 20112 (2014).   DOI
3 J. Tian, and G. Cao, Nano Reviews 4, 22578 (2013).   DOI
4 L .E. Brus, J. Chem. Phys. 80, 4403 (1984).   DOI
5 Y. Wang, A. Suna, W. Mahler, and R. Kasouski, J. Chem. Phys. 87, 7315 (1987).   DOI
6 T. Hirai, Y. Tsubaki, H. Sato, and I. Komasawa, J. Chem. Eng. Japan 28, 468 (1995).   DOI
7 Y. Chen, Y. Wang, W. Li, Q. Yang, Q. Hou, L. Wei, L. Liu, F. Huang, and M. Ju, Appl. Catal. B: Environ. 210, 352 (2017).   DOI
8 Z. H. N. Al-Azri, W. T. Chen, A. Chan, V. Jovic, T. Ina, H. Idriss, and G. I. N. Waterhouse, J. Catal. 329, 355 (2015).   DOI
9 M. Sun, Y. Wang, Y. Fang, S. Sun, and Z. Yu, J. Alloy. Compd. 684, 335 (2016).   DOI
10 W. Zhang, X. Xiao, L. Zheng, and C. Wan, App. Surf. Sci. 358, 468 (2015).   DOI
11 P. S. Nair, T. Radhakrishnan, N. Revaprasadu, G. A. Kolawole, A. S. Luyt, and V. Djokovic, Appl. Phys. A81, 835 (2005).
12 J. Zhang, F. X. Xiao, G. Xiao, and B. Liu, Appl. Catal. A: Gen. 521, 50 (2016).   DOI
13 L. Yang, Q.-l. Ma, Y. Cai, and Y. M. Huang, App. Surf. Sci. 292, 297 (2014).   DOI
14 Y. Xu and M. A. A. Schoonen, Am. Mineral. 85, 543 (2000).   DOI
15 L. Jin, G. Sirigu, X. Tong, A. Camellini, A. Parisini, G. Nicotra, C. Spinella, H. Zhao, S. Sun, V. Morandi, M. Zavelani-Rossi, F. Rosei, and A. Vomiero, Nano Energy 30, 531 (2016).   DOI
16 M. C. Weidman, M. E. Beck, R. S. Hoffman, F. Prins, and W. A. Tisdale, ACS Nano 8, 6363 (2014).   DOI
17 F. Bensouici, T. Souier, A. Iratni, A. A. Dakhel, R. Tala-Ighil, and M. Bououdina, Surf. Coat. Technol. 251, 170 (2014).   DOI
18 S. Ito, T. Takeuchi, T. Katayama, M. Sugiyama, M. Matsuda, T. Kitamura, Y. Wada, and S. Yanagida, Chem. Mater. 15, 2824 (2003).   DOI
19 H. Choi, H. Ryu, and W.-J. Lee, Korean J. Met. Mater. 55, 46 (2017).   DOI
20 T. N. Murakami, Y. Kijitori, N. Kawashima, and T. Miyasaka, J. Photochem. Photobiol. A: Chemistry 164, 187 (2004).   DOI
21 M. Nakamura, K. Makino, L. Sirghi, T. Aoki, and Y. Hatanaka, Surf. Coat. Technol. 169-170, 699 (2003).   DOI
22 Z. A. Garmaroudi, M. Abdi-Jalebi, M. R. Mohammadi, and R. H. Friend, RSC Advances 6(75), 70895 (2016).   DOI
23 H. P. Deshmukh, P. S. Shinde, and P. S. Patil, Mater. Sci. Eng. B 130, 220 (2006).   DOI
24 Q. Ye, P. Y. Liu, Z. F. Tang, and L. Zhai, Vacuum 81, 627 (2007).   DOI
25 A. Hadi, M. Alhabradi, Q. Chen, H. Liu, W. Guo, M. Curioni, R. Cernik, and Z. Liu, Appl. Surf. Sci. 428, 1089 (2018).   DOI
26 K. Du, G. Liu, X. Chen, and K. Wang, J. Electrochem. Soc. 162, E251 (2015).   DOI
27 J. H. Lee, J. I.Youn, Y. J. Kim, I. K. Kim, K. W. Jang, and H. J. Oh, Ceram. Int. 41, 11899 (2015).   DOI
28 S. Lee, D. Kim, Y. Kim, U. Jung, and W. Chung, Met. Mater. Int. 22, 20 (2016).   DOI
29 F. Li, Y. Jiao, S. Xie, and J. Li, J. Power Sources 280, 373 (2015).   DOI
30 X. Zheng, D. Li, X. Li, J. Chen, C. Cao, J. Fang, J. Wang, Y. He, and Y. Zheng, Appl. Catal. B: Environ. 168-169, 408 (2015).   DOI
31 H. Wang, S. Dong, Y. Chang, X. Zhou, and X. Hu, Appl. Surf. Sci. 258, 4288 (2012).   DOI
32 X. Zhang, B. Wang, and Z. Liu, J. Colloid Interf. Sci. 484, 213 (2016).   DOI
33 M. Zhang, Y. Xu, Z. Gong, J. Tao, Z. Sun, J. Lv, X. Chen, X. Jiang, G. He, P. Wang, and F. Meng, J. Alloy. Compd. 649, 190 (2015).   DOI
34 C. Liu, Z. Liu, Y. Li, J. Ya, E. Lei, and L. An, Appl. Surf. Sci. 257, 7041 (2011).   DOI
35 B. Tan, and Y. Y. Wu, J. Phys. Chem. B 110, 15932 (2006).   DOI
36 J. H. Lee, J. I. Youn, Y. J. Kim, and H. J. Oh, J. Mater. Sci. Technol. 31, 664 (2015).   DOI
37 H. J. Oh, R. Hock, R. Schurr, A. Holzing, and C.-S. Chi, J. Phys. Chem. Solids 74, 708 (2013).   DOI
38 X. Zhang, Y. Lin, J. Wu, J. Jing, and B. Fang, Opt. Commun. 395, 117 (2017).   DOI