DOI QR코드

DOI QR Code

Synthesis and Characterization of ZnO/TiO2 Photocatalyst Decorated with PbS QDs for the Degradation of Aniline Blue Solution

  • Lee, Jong-Ho (Department of Chemistry, Hanseo University) ;
  • Ahn, Hong-Joo (Nucl. Chem. Research Division, Korea Atomic Energy Research Institute) ;
  • Youn, Jeong-Il (School of Advanced Materials Engineering, Sungkyunkwan University) ;
  • Kim, Young-Jig (School of Advanced Materials Engineering, Sungkyunkwan University) ;
  • Suh, Su-Jeong (School of Advanced Materials Engineering, Sungkyunkwan University) ;
  • Oh, Han-Jun (Department of Materials Science, Hanseo University)
  • Received : 2018.10.04
  • Accepted : 2018.10.15
  • Published : 2018.12.05

Abstract

A $ZnO/TiO_2$ photocatalyst decorated with PbS quantum dots (QDs) was synthesized to achieve high photocatalytic efficiency for the decomposition of dye in aqueous media. A $TiO_2$ porous layer, as a precursor photocatalyst, was fabricated using micro-arc oxidation, and exhibited irregular porous cells with anatase and rutile crystalline structures. Then, a ZnO-deposited $TiO_2$ catalyst was fabricated using a zinc acetate solution, and PbS QDs were uniformly deposited on the surface of the $ZnO/TiO_2$ photocatalyst using the successive ionic layer adsorption and reaction (SILAR) technique. For the PbS $QDs/ZnO/TiO_2$ photocatalyst, ZnO and PbS nanoparticles are uniformly precipitated on the $TiO_2$ surface. However, the diameters of the PbS particles were very fine, and their shape and distribution were relatively more homogeneous compared to the ZnO particles on the $TiO_2$ surface. The PbS QDs on the $TiO_2$ surface can induce changes in band gap energy due to the quantum confinement effect. The effective band gap of the PbS QDs was calculated to be 1.43 eV. To evaluate their photocatalytic properties, Aniline blue decomposition tests were performed. The presence of ZnO and PbS nanoparticles on the $TiO_2$ catalysts enhanced photoactivity by improving the absorption of visible light. The PbS $QDs/ZnO/TiO_2$ heterojunction photocatalyst showed a higher Aniline blue decomposition rate and photocatalytic activity, due to the quantum size effect of the PbS nanoparticles, and the more efficient transport of charge carriers.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. X. Zheng, D. Li, X. Li, J. Chen, C. Cao, J. Fang, J. Wang, Y. He, and Y. Zheng, Appl. Catal. B: Environ. 168-169, 408 (2015). https://doi.org/10.1016/j.apcatb.2015.01.001
  2. F. Li, Y. Jiao, S. Xie, and J. Li, J. Power Sources 280, 373 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.118
  3. L. Yang, Q.-l. Ma, Y. Cai, and Y. M. Huang, App. Surf. Sci. 292, 297 (2014). https://doi.org/10.1016/j.apsusc.2013.11.134
  4. Y. Xu and M. A. A. Schoonen, Am. Mineral. 85, 543 (2000). https://doi.org/10.2138/am-2000-0416
  5. L. Jin, G. Sirigu, X. Tong, A. Camellini, A. Parisini, G. Nicotra, C. Spinella, H. Zhao, S. Sun, V. Morandi, M. Zavelani-Rossi, F. Rosei, and A. Vomiero, Nano Energy 30, 531 (2016). https://doi.org/10.1016/j.nanoen.2016.10.029
  6. M. C. Weidman, M. E. Beck, R. S. Hoffman, F. Prins, and W. A. Tisdale, ACS Nano 8, 6363 (2014). https://doi.org/10.1021/nn5018654
  7. K. Du, G. Liu, X. Chen, and K. Wang, J. Electrochem. Soc. 162, E251 (2015). https://doi.org/10.1149/2.0661510jes
  8. F. Bensouici, T. Souier, A. Iratni, A. A. Dakhel, R. Tala-Ighil, and M. Bououdina, Surf. Coat. Technol. 251, 170 (2014). https://doi.org/10.1016/j.surfcoat.2014.04.021
  9. S. Ito, T. Takeuchi, T. Katayama, M. Sugiyama, M. Matsuda, T. Kitamura, Y. Wada, and S. Yanagida, Chem. Mater. 15, 2824 (2003). https://doi.org/10.1021/cm021051t
  10. H. Choi, H. Ryu, and W.-J. Lee, Korean J. Met. Mater. 55, 46 (2017). https://doi.org/10.3365/KJMM.2017.55.1.46
  11. T. N. Murakami, Y. Kijitori, N. Kawashima, and T. Miyasaka, J. Photochem. Photobiol. A: Chemistry 164, 187 (2004). https://doi.org/10.1016/j.jphotochem.2003.11.021
  12. M. Nakamura, K. Makino, L. Sirghi, T. Aoki, and Y. Hatanaka, Surf. Coat. Technol. 169-170, 699 (2003). https://doi.org/10.1016/S0257-8972(03)00145-2
  13. Z. A. Garmaroudi, M. Abdi-Jalebi, M. R. Mohammadi, and R. H. Friend, RSC Advances 6(75), 70895 (2016). https://doi.org/10.1039/C6RA13273A
  14. H. P. Deshmukh, P. S. Shinde, and P. S. Patil, Mater. Sci. Eng. B 130, 220 (2006). https://doi.org/10.1016/j.mseb.2006.03.016
  15. Q. Ye, P. Y. Liu, Z. F. Tang, and L. Zhai, Vacuum 81, 627 (2007). https://doi.org/10.1016/j.vacuum.2006.09.001
  16. A. Hadi, M. Alhabradi, Q. Chen, H. Liu, W. Guo, M. Curioni, R. Cernik, and Z. Liu, Appl. Surf. Sci. 428, 1089 (2018). https://doi.org/10.1016/j.apsusc.2017.09.263
  17. J. H. Lee, J. I.Youn, Y. J. Kim, I. K. Kim, K. W. Jang, and H. J. Oh, Ceram. Int. 41, 11899 (2015). https://doi.org/10.1016/j.ceramint.2015.05.157
  18. S. Lee, D. Kim, Y. Kim, U. Jung, and W. Chung, Met. Mater. Int. 22, 20 (2016). https://doi.org/10.1007/s12540-015-5426-2
  19. X. Zhang, Y. Lin, J. Wu, J. Jing, and B. Fang, Opt. Commun. 395, 117 (2017). https://doi.org/10.1016/j.optcom.2016.05.026
  20. X. Zhang, B. Wang, and Z. Liu, J. Colloid Interf. Sci. 484, 213 (2016). https://doi.org/10.1016/j.jcis.2016.09.002
  21. M. Zhang, Y. Xu, Z. Gong, J. Tao, Z. Sun, J. Lv, X. Chen, X. Jiang, G. He, P. Wang, and F. Meng, J. Alloy. Compd. 649, 190 (2015). https://doi.org/10.1016/j.jallcom.2015.07.145
  22. C. Liu, Z. Liu, Y. Li, J. Ya, E. Lei, and L. An, Appl. Surf. Sci. 257, 7041 (2011). https://doi.org/10.1016/j.apsusc.2011.02.133
  23. H. Wang, S. Dong, Y. Chang, X. Zhou, and X. Hu, Appl. Surf. Sci. 258, 4288 (2012). https://doi.org/10.1016/j.apsusc.2011.12.080
  24. B. Tan, and Y. Y. Wu, J. Phys. Chem. B 110, 15932 (2006). https://doi.org/10.1021/jp063972n
  25. J. H. Lee, J. I. Youn, Y. J. Kim, and H. J. Oh, J. Mater. Sci. Technol. 31, 664 (2015). https://doi.org/10.1016/j.jmst.2014.11.023
  26. H. J. Oh, R. Hock, R. Schurr, A. Holzing, and C.-S. Chi, J. Phys. Chem. Solids 74, 708 (2013). https://doi.org/10.1016/j.jpcs.2013.01.008
  27. Y. L. Xie, Z. X. Li, Z. G. Xu, and H. L. Zhang, Electrochem. Commun. 13, 788 (2011). https://doi.org/10.1016/j.elecom.2011.05.003
  28. P. S. Nair, T. Radhakrishnan, N. Revaprasadu, G. A. Kolawole, A. S. Luyt, and V. Djokovic, Appl. Phys. A81, 835 (2005).
  29. D. H. Yeon, S. M. Lee, Y. H. Jo, J. Moon, and Y. S. Cho, J. Mater. Chem. A 2, 20112 (2014). https://doi.org/10.1039/C4TA03433C
  30. J. Tian, and G. Cao, Nano Reviews 4, 22578 (2013). https://doi.org/10.3402/nano.v4i0.22578
  31. L .E. Brus, J. Chem. Phys. 80, 4403 (1984). https://doi.org/10.1063/1.447218
  32. Y. Wang, A. Suna, W. Mahler, and R. Kasouski, J. Chem. Phys. 87, 7315 (1987). https://doi.org/10.1063/1.453325
  33. T. Hirai, Y. Tsubaki, H. Sato, and I. Komasawa, J. Chem. Eng. Japan 28, 468 (1995). https://doi.org/10.1252/jcej.28.468
  34. Y. Chen, Y. Wang, W. Li, Q. Yang, Q. Hou, L. Wei, L. Liu, F. Huang, and M. Ju, Appl. Catal. B: Environ. 210, 352 (2017). https://doi.org/10.1016/j.apcatb.2017.03.077
  35. Z. H. N. Al-Azri, W. T. Chen, A. Chan, V. Jovic, T. Ina, H. Idriss, and G. I. N. Waterhouse, J. Catal. 329, 355 (2015). https://doi.org/10.1016/j.jcat.2015.06.005
  36. M. Sun, Y. Wang, Y. Fang, S. Sun, and Z. Yu, J. Alloy. Compd. 684, 335 (2016). https://doi.org/10.1016/j.jallcom.2016.05.189
  37. W. Zhang, X. Xiao, L. Zheng, and C. Wan, App. Surf. Sci. 358, 468 (2015). https://doi.org/10.1016/j.apsusc.2015.08.054
  38. J. Zhang, F. X. Xiao, G. Xiao, and B. Liu, Appl. Catal. A: Gen. 521, 50 (2016). https://doi.org/10.1016/j.apcata.2015.10.046