Browse > Article
http://dx.doi.org/10.14478/ace.2016.1109

Preparation of Active Cu/ZnO-based Catalysts for Methanol Synthesis  

Jeong, Cheonwoo (Department of Chemical Engineering, Hanyang University)
Suh, Young-Woong (Department of Chemical Engineering, Hanyang University)
Publication Information
Applied Chemistry for Engineering / v.27, no.6, 2016 , pp. 555-564 More about this Journal
Abstract
In recent years, methanol has attracted much attention since it can be cleanly manufactured by the combined use of atmospheric $CO_2$ recycling and water splitting via renewable energy. For the concept of "methanol economy", an active methanol synthesis catalyst should be prepared in a sophisticated manner rather than by empirical optimization approach. Even though Cu/ZnO-based catalysts prepared by coprecipitation are well known and have been extensively investigated even for a century, fundamental understanding on the precipitation chemistry and catalyst nanostructure has recently been achieved due to complexity of the necessary preparation steps such as precipitation, ageing, filtering, washing, drying, calcination and reduction. Herein we review the recent reports regarding the effects of various synthesis variables in each step on the physicochemical properties of materials in precursor, calcined and reduced states. The relationship between these characteristics and the catalytic performance will also be discussed because many variables in each step strongly influence the final catalytic activity, called "chemical memory". All discussion focuses on how to prepare a highly active Cu/ZnO-based catalyst for methanol synthesis. Furthermore, the preparation strategy we deliver here would be utilized for designing other coprecipitation-derived supported metal or metal oxide catalysts.
Keywords
methanol synthesis; Cu/ZnO; coprecipitation; chemical memory effect;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Behrens, I. Kasatkin, S. Kuhl, and G. Weinberg, Phase-pure Cu,Zn,Al hydrotalcite-like materials as precursors for copper rich Cu/ZnO/$Al_2O_3$ catalysts, Chem. Mater., 22, 386-397 (2010).   DOI
2 C. Jeong, J. Park, J. W. Bae, and Y.-W. Suh, Comparison of normal and reverse precipitation methods in the preparation of Cu/ZnO/$Al_2O_3$ catalysts for hydrogenolysis of butyl butyrate, Catal. Commun., 54, 1-5 (2014).   DOI
3 C. Busetto, G. Del Piero, and G. Manara, Catalysts for low-temperature methanol synthesis: Preparation of Cu-Zn-Al mixed oxides via hydrotalcite-like precursors, Chem. Mater., 22, 386-397 (2010).   DOI
4 C. Jeong, M. J. Hyun, and Y.-W. Suh, Activity of coprecipitated CuO/ZnO catalysts in the decomposition of dimethylhexane-1,6-dicarbamate, Catal. Commun., 70, 34-39 (2015).   DOI
5 M. Behrens, F. Girgsdies, A. Trunschke, and R. Schlogl, Minerals as model compounds for Cu/ZnO catalyst precursors: Structural and thermal properties and IR spectra of mineral and synthetic (zincian) malachite, rosasite and aurichalcite and a catalyst precursor mixture, Eur. J. Inorg. Chem., 2009, 1347-1357 (2009).   DOI
6 M. J. Hyun, M. Shin, Y. J. Kim, and Y.-W. Suh, Phosgene-free decomposition of dimethylhexane-1,6-dicarbamate over Zn.O, Res. Chem. Intermed., 42, 57-70 (2016).   DOI
7 K. F. Ortega, A. Huttner, J. Heese, and M. Berhens, Effect of Ni incorporation into malachite precursors on the catalytic properties of the resulting nanostructured CuO/NiO catalysts, Eur. J. Inorg. Chem., 2016, 2063-2071 (2016).   DOI
8 D. M. Whittle, A. A. Mirzaei, J. S. J. Hargreaves, R. W. Joyner, C. J. Kiely, S. H. Taylor, and G. J. Hutchings, Co-precipitated copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation: effect of precipitate ageing on catalyst activity, Phys. Chem. Chem. Phys., 4, 5915-5920 (2002).   DOI
9 M. Behrens, S. Zander, P. Kurr, N. Jacobsen, J. Senker, G. Koch, T. Ressler, R. W. Fischer, and R. Schlogl, Performance improvement of nanocatalysts by promoter-induced defects in the support material: Methanol synthesis over Cu/ZnO:Al, J. Am. Chem. Soc., 135, 6061-6068 (2013).   DOI
10 C. Jeong and Y.-W. Suh, Role of $ZrO_2$ in Cu/ZnO/$ZrO_2$ catalysts prepared from the precipitated Cu/Zn/Zr precursors, Catal. Today, 265, 254-263 (2016).   DOI
11 J. Schumann, T. Lunkenbein, A. Tarasov, N. Thomas, R. Schlogl, and M. Behrens, Synthesis and Characterisation of a Highly Active Cu/ZnO:Al Catalyst, ChemCatChem, 6, 2889-2897 (2014).   DOI
12 J. Schumann, M. Eichelbaum, T. Lunkenbein, N. Thomas, M. Consuelo, A. Galvan, R. Schlogl, and M. Behrens, Promoting strong metal support interaction: Doping ZnO for enhanced activity of Cu/ZnO:M (M = Al, Ga, Mg) catalysts, ACS Catal., 5, 3260-3270 (2015).   DOI
13 Y.-W. Suh and H.-K. Rhee, Optimum washing conditions for the preparation of Cu/ZnO/$ZrO_2$ for methanol synthesis from CO hydrogenation:Effects of residual sodium, Korean J. Chem. Eng., 19, 17-19 (2002).   DOI
14 S. Kuhl, A. Tarasov, S. Zander, I. Kasatkin, and M. Behrens, Cu-Based catalyst resulting from a Cu,Zn,Al hydrotalcite-like compound: A microstructural, thermoanalytical, and in situ XAS study, Chem. Eur. J., 20, 3782-3792 (2014).   DOI
15 M. M. Günter, T. Ressler, R. E. Jentoft, and B. Bems, Redox behavior of copper oxide/zinc oxide catalysts in the steam reforming of methanol studied by in situ X-ray diffraction and absorption spectroscopy, J. Catal., 203, 133-149 (2001).   DOI
16 S. Zander, B. Seidlhofer, and M. Behrens, In situ EDXRD study of the chemistry of aging of co-precipitated mixed Cu,Zn hydroxycarbonates - consequences for the preparation of Cu/ZnO catalysts, Dalton Trans., 41, 13413-13422 (2012).   DOI
17 T. E. Gier, X. Bu, S.-L. Wang, and G. D. Stucky, $Na_2Zn_3(CO_3)_4{\cdot}3H_2O$, a microporous sodium zincocarbonate with a diamond-type tetrahedral-triangular topology, J. Am. Chem. Soc., 118, 3039-3040 (1996).   DOI
18 J. Schumann, A. Tarasov, N. Thomas, R. Schlogl, and M. Behrens, Cu,Zn-based catalysts for methanol synthesis: On the effect of calcination conditions and the part of residual carbonates, Appl. Catal. A, 516, 117-126 (2016).   DOI
19 A. Tarasov, J. Schumann, F. Girgsdies, N. Thomas, and M. Behrens, Thermokinetic investigation of binary Cu/Zn hydroxycarbonates as precursors for Cu/ZnO catalysts, Thermochim. Acta, 591, 1-9 (2014).   DOI
20 G. Fierro, M. Lo Jacono, M. Inversi, P. Porta, F. Cioci, and R. Lavecchia, Study of the reducibility of copper in CuO-ZnO catalysts by temperature-programmed reduction, Appl. Catal. A, 137, 327-348 (1996).   DOI
21 T. van Herwijnen and W. A. de Jong, Brass formation in a copper/zinc oxide CO shift catalyst, J. Catal., 34, 209-214 (1974).   DOI
22 M. S. Spencer, The role of zinc oxide in Cu/ZnO catalysts for methanol synthesis and the water-gas shift reaction, Top. Catal., 8, 259-266 (1999).   DOI
23 T. Kandemir, F. Girgsdies, T. C. Hansen, K.-D. Liss, I. Kasatkin, E. L. Kunkes, G. Wowsnick, N. Jacobsen, R. Schlogl, and M. Behrens, In situ study of catalytic processes: Neutron diffraction of a methanol synthesis catalyst at industrially relevant pressure, Angew. Chem. Int. Ed., 52, 5166-5170 (2013).   DOI
24 J.-D. Grunwaldt, A. M. Molenbroek, N.-Y. Topsoe, H. Topsoe, and B. S. Clausen, In situ investigations of structural changes in Cu/ZnO catalysts, J. Catal., 194, 452-460 (2000).   DOI
25 S. Kuld, C. Conradsen, P. G. Moses, I. Chorkendorff, and J. Sehested, Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst, Angew. Chem. Int. Ed., 53, 5941-5945 (2014).   DOI
26 P. C. K. Vesborg, I. Chorkendorff, I. Knudsen, O. Balmes, J. Nerlov, A. M. Molenbroek, B. S. Clausen, and S. Helveg, Transient behavior of Cu/ZnO-based methanol synthesis catalysts, J. Catal., 262, 65-72 (2009).   DOI
27 T. Lunkenbein, J. Schumann, M. Behrens, R. Schlogl, and M. G. Willinger, Formation of a ZnO overlayer in industrial Cu/ZnO/$Al_2O_3$ catalysts induced by strong metal-support interactions, Angew. Chem. Int. Ed., 54, 4544-4548 (2015).   DOI
28 M. B. Fichtl, J. Schumann, I. Kasatkin, N. Jacobsen, M. Behrens, R. Schlogl, M. Muhler, and O. Hinrichsen, Counting of oxygen defects versus metal surface sites in methanol synthesis catalysts by different probe molecules, Angew. Chem. Int. Ed., 53, 7043-7047 (2014).   DOI
29 G. A. Olah, A. Goeppert, and G. K. S. Prakash, Beyond Oil and Gas: The Methanol Economy, 2nd ed., 1-10, Wiley-VCH, Weinheim, Germany (2009).
30 P. L. Hansen, J. B. Wagner, S. Helveg, J. R. Rostrup-Nielsen, B. S. Clausen, and H. Topsoe, Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals, Science, 295, 2053-2055 (2002).   DOI
31 G. A. Olah, Beyond oil and gas: The methanol economy, Angew. Chem. Int. Ed., 44, 2636-2639 (2005).   DOI
32 G. A. Olah, A. Goeppert, and G. K. S. Prakash, Chemical recycling of carbon dioxide to methanol and dimethyl ether: From greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons, J. Org. Chem., 74, 487-498 (2009).   DOI
33 Methanol economy, https://en.wikipedia.org/wiki/Methanol_economy, 14th November 2016.
34 J.-P. Lange, Methanol synthesis: a short review of technology improvements, Catal. Today, 64, 3-8 (2001).   DOI
35 J. Ott, V. Gronemann, F. Pontzen, E. Fiedler, G. Grossmann, D. B. Kersebohm, G. Weiss, and C. Witte, Ullmann's Encyclopedia of Industrial Chemistry, Methanol, 1-27, Wiley-VCH, Weinheim, Germany (2012).
36 R. Schlogl, The revolution continues: Energiewende 2.0, Angew. Chem. Int. Ed., 54, 4436-4439 (2015).   DOI
37 X.-M. Liu, G. Q. Lu, Z.-F. Yan, and J. Beltramini, Recent advances in catalysts for methanol synthesis via hydrogenation of CO and $CO_2$, Ind. Eng. Chem. Res., 42, 6518-6530 (2003).   DOI
38 S. G. Jadhav, P. D. Vaidya, B. M. Bhanage, and J. B. Joshi, Catalytic carbon dioxide hydrogenation to methanol: A review of recent studies, Chem. Eng. Res. Des., 92, 2557-2567 (2014).   DOI
39 E. E. Barton, D. M. Rampulla, and A. B. Bocarsly, Selective solar- driven reduction of $CO_2$ to methanol using a catalyzed p-GaP based photoelectrochemical Cell, J. Am. Chem. Soc., 130, 6342-6344 (2008).   DOI
40 W. Wang, S. Wang, X. Ma, and J. Gong, Recent advances in catalytic hydrogenation of carbon dioxide, Chem. Soc. Rev., 40, 3703-3727 (2011).   DOI
41 W.-H. Wang, Y. Himeda, J. T. Muckerman, G. F. Manbeck, and E. Fujita, $CO_2$ hydrogenation to formate and methanol as an alternative to photo- and electrochemical $CO_2$ reduction, Chem. Rev., 115, 12936-12973 (2015).   DOI
42 J. Zhang, Electrochemical Reduction of Carbon Dioxide: Fundamentals and Technologies, 1-45, CRC Press, USA (2016).
43 D. Nazimek and B. Czech, Artificial photosynthesis-$CO_2$ towards methanol, IOP Conf. Ser.: Mater. Sci. Eng., 19, 012010 (2010).
44 Per K. Frolich, M. R. Fenske, and D. Quiggle, Catalysts for the formation of alcohols from carbon monoxide and hydrogen, Ind. Eng. Chem., 20, 694-698 (1928).   DOI
45 M. Watanabe, Photosynthesis of methanol and methane from $CO_2$ and $H_2O$ molecules on a ZnO surface, Surf. Sci. Lett., 279, L236-L242 (1992).
46 K. P. de Jong, Synthesis of Solid Catalysts, 329-351, Wiley-VCH, Weinheim (2009).
47 G. Lormand, Industrial production of synthetic methanol, Ind. Eng. Chem., 17, 430-432 (1925).   DOI
48 M. R. Fenske and Per K. Frolich, Catalysts for the formation of alcohols from carbon monoxide and hydrogen, Ind. Eng. Chem., 21, 1052-1055 (1929).   DOI
49 B. Bems, M. Schur, A. Dassenoy, H. Junkes, D. Herein, and R. Schlogl, Relations between synthesis and microstructural properties of copper/zinc hydroxycarbonates, Chem. Eur. J., 9, 2039-2052 (2003).   DOI
50 D. Cornthwaite, Methanol synthesis catalyst, US Patent 3,923,694 (1975).
51 M. Behrens, Meso- and nano-structuring of industrial Cu/ZnO/($Al_2O_3$) catalysts, J. Catal., 267, 24-29 (2009).   DOI
52 G. J. Millar, I. H. Holm, P. J. R. Uwins, and J. Drennan, Characterization of precursors to methanol synthesis catalysts Cu/ZnO system, J. Chem. Soc., Faraday Trans., 94, 593-600 (1998).   DOI
53 G. Ertl, H. Knozinger, F. Schuth, and J. Weitkamp, Handbook of Heterogeneous Catalysis, 100-119, Wiley-VCH, Weinheim, Germany (2008).
54 J.-L. Li and T. Inui, Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminum oxides, precipitated at different pHs and temperatures, Appl. Catal. A, 137, 105-117 (1996).   DOI
55 B. C. Faust, W. B. Labiosa, K. H. Dai, J. S. MacFall, B. A. Browne, A. A. Ribeiro, and D. D. Richter, Speciation of aqueous mononuclear Al(III)-hydroxo and other Al(III) complexes at concentrations of geochemical relevance by aluminum-27 nuclear magnetic resonance spectroscopy, Geochim. Cosmochim. Acta, 59, 2651-2661 (1995).   DOI
56 C. Baltes, S. Vukojevic, and F. Schuth, Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/$Al_2O_3$ catalysts for methanol synthesis, J. Catal., 258, 334-344 (2008).   DOI
57 E. Frei, A. Schaadt, T. Ludwig, H. Hillebrecht, and I. Krossing, The influence of the precipitation/ageing temperature on a Cu/ZnO/$ZrO_2$ catalyst for methanol synthesis from $H_2$ and $CO_2$, ChemCatChem, 6, 1721-1730 (2014).   DOI
58 M. Behrens, D. Brennecke, F. Girgsdies, S. Kissner, A. Trunschke, N. Nasrudin, S. Zakaria, N. F. Idris, S. B. A. Hamid, B. Kniep, R. Fischer, W. Busser, M. Muhler, and R. Schlogl, Understanding the complexity of a catalyst synthesis: Co-precipitation of mixed Cu,Zn,Al hydroxycarbonate precursors for Cu/ZnO/$Al_2O_3$ catalysts investigated by titration experiments, Appl. Catal. A, 392, 93-102 (2011).   DOI
59 C. C. Perry and K. L. Shafran, The systematic study of aluminium speciation in medium concentrated aqueous solutions, J. Inorg. Biochem., 87, 115-124 (2001).   DOI
60 A. C. Vermeulen, J. W. Geus, R. J. Stol, and P. L. de Bruyn, Hydrolysis-precipitation studies of aluminum (III) solutions. 1. Titration of acidified aluminum nitrate solutions, J. Colloid Interface Sci., 51, 449-458 (1975).   DOI
61 S. L. Wang, M. K. Wang, and Y. M. Tzou, Effect of temperatures on formation and transformation of hydrolytic aluminum in aqueous solutions, Colloids Surf. A, 231, 143-157 (2003).   DOI