Browse > Article
http://dx.doi.org/10.1016/j.cap.2018.07.009

Regulation of precursor solution concentration for In-Zn oxide thin film transistors  

Chen, Yanping (State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University)
He, Zhongyuan (State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University)
Li, Yaogang (Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University)
Zhang, Qinghong (Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University)
Hou, Chengyi (Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University)
Wang, Hongzhi (State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University)
Abstract
The tunable electronic performance of the solution-processed semiconductor metal oxide is of great significance for the printing electronics. In current work, transparent thin-film transistors (TFTs) with indium-zinc oxide (IZO) were fabricated as active layer by a simple eco-friendly aqueous route. The aqueous precursor solution is composed of water without any other organic additives and the IZO films are amorphous revealed by the X-ray diffraction (XRD). With systematic studies of atomic force microscopy (AFM), X-ray photoemission spectroscopy (XPS) and the semiconductor property characterizations, it was revealed that the electrical performance of the IZO TFTs is dependent on the concentration of precursor solution. As well, the optimum preparation process was obtained. The concentrations induced the regulation of the electronic performance was clearly demonstrated with a proposed mechanism. The results are expected to be beneficial for development of solution-processed metal oxide TFTs.
Keywords
Transparent thin-film transistors; Indium-zinc oxide; Concentration; Solution-processed;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J.K. Chang, D. Kang, I. Song, J.C. Park, H. Lim, S. Kim, E. Lee, R. Chung, J.C. Lee, Y. Park, Highly Stable $Ga_2O_3-In_2O_3-zno$ TFT for Active-matrix Organic Light-emitting Diode Display Application, Electron Devices Meeting, 2007.
2 K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, Nature 432 (2004) 488-492.   DOI
3 T. Rembert, C. Battaglia, A. Anders, A. Javey, Room temperature oxide deposition approach to fully transparent, all-oxide thin-film transistors, Adv. Mater. 27 (2015) 6090-6095.   DOI
4 P.K. Nayak, Z. Wang, H.N. Alshareef, Indium-free fully transparent electronics deposited entirely by atomic layer deposition, Adv. Mater. 28 (2016) 7736-7744.   DOI
5 H. Ning, J. Chen, Z. Fang, R. Tao, W. Cai, R. Yao, S. Hu, Z. Zhu, Y. Zhou, C. Yang, J. Peng, Direct inkjet printing of silver source/drain electrodes on an amorphous InGaZnO layer for thin-film transistors, Materials 10 (2017) 51-57.   DOI
6 B. Wang, X. Yu, P. Guo, W. Huang, L. Zeng, N. Zhou, L. Chi, M.J. Bedzyk, R.P.H. Chang, T.J. Marks, A. Facchetti, Solution-processed all-oxide transparent high-performance transistors fabricated by spray-combustion synthesis, Adv. Electron. Mater. 2 (2016) 1500427-1500435.   DOI
7 W. Huang, L. Zeng, X. Yu, P. Guo, B. Wang, Q. Ma, R.P.H. Chang, J. Yu, M.J. Bedzyk, T.J. Marks, A. Facchetti, Metal oxide transistors via polyethylenimine doping of the channel layer: interplay of doping, microstructure, and charge transport, Adv. Funct. Mater. 26 (2016) 6179-6187.   DOI
8 G. Liu, A. Liu, H. Zhu, B. Shin, E. Fortunato, R. Martins, Y. Wang, F. Shan, Lowtemperature, nontoxic water-induced metal-oxide thin films and their application in thin-film transistors, Adv. Funct. Mater. 25 (2015) 2564-2572.   DOI
9 C.G. Choi, S.J. Seo, B.S. Bae, Solution-processed indium-zinc oxide transparent thinfilm transistors, Electrochem. Solid State Lett. 11 (2008) 7-9.
10 H. Pu, Q. Zhou, L. Yue, Q. Zhang, Solution-processed indium gallium zinc oxide thin-film transistors with infrared irradiation annealing, Semicond. Sci. Technol. 28 (2013) 105002-105006.   DOI
11 Y. Hwan Hwang, J.S. Seo, J. Moon Yun, H. Park, S. Yang, S.H. Ko Park, B.S. Bae, An 'aqueous route' for the fabrication of low-temperature-processable oxide flexible transparent thin-film transistors on plastic substrates, NPG Asia Mater. 5 (2013) 45-52.   DOI
12 G. Wang, N. Persson, P.H. Chu, N. Kleinhenz, B. Fu, M. Chang, N. Deb, Y. Mao, H. Wang, M.A. Grover, Microfluidic crystal engineering of ${\pi}$-conjugated polymers, ACS Nano 9 (2015) 8220-8230.   DOI
13 C.S. Li, Y.N. Li, Y.L. Wu, B.S. Ong, R.O. Loutfy, Fabrication conditions for solutionprocessed high-mobility ZnO thin-film transistors, J. Mater. Chem. 19 (2009) 1626-1634.   DOI
14 Y.H. Hwang, H.G. Im, H. Park, Y.Y. Nam, B.S. Bae, The effect of metal composition on bias stability of solution processed indium oxide based thin film transistors, ECS J. Solid-State Sci. Technol. 2 (2013) 200-204.   DOI
15 M. Niederberger, N. Pinna, Metal Oxide Nanoparticles in Organic Solvents, Springer-Verlag, London, 2009.
16 K.H. Lim, J.E. Huh, J. Lee, N.K. Cho, J.W. Park, B.I. Nam, E. Lee, Y.S. Kim, Strong influence of humidity on low-temperature thin-film fabrication via metal aqua complex for high performance oxide semiconductor thin-film transistors, ACS Appl. Mater. Interfaces 9 (2016) 548-557.
17 B.Y. Su, S.Y. Chu, Y.D. Juang, L. Han, Improved negative bias stress stability of IZO thin film transistors via post-vacuum annealing of solution method, ECS J. Solid- State Sci. Technol. 2 (2013) 99-103.
18 M. Morales Masis, S. Martin De Nicolas, J. Holovsky, S. De Wolf, C. Ballif, Lowtemperature high-mobility amorphous IZO for silicon heterojunction solar cells, IEEE J. Photovolt. 5 (2015) 1340-1347.   DOI
19 K. Heo, K.S. Cho, J.Y. Choi, S. Han, Y.S. Yu, Y. Park, G. Yoo, J.H. Park, S.W. Hwang, S.Y. Lee, Temperature-dependent electrical characterization of amorphous indium zinc oxide thin-film transistors, IEEE Trans. Electron. Dev. 64 (2017) 3183-3188.   DOI
20 G. Wang, W. Huang, N.D. Eastham, S. Fabiano, E.F. Manley, L. Zeng, B. Wang, X. Zhang, Z. Chen, R. Li, R.P.H. Chang, L.X. Chen, M.J. Bedzyk, F.S. Melkonyan, A. Facchetti, T.J. Marks, Aggregation control in natural brush-printed conjugated polymer films and implications for enhancing charge transport, Proc. Natl. Acad. Sci. U.S.A. 114 (2017) 10066-10073.   DOI
21 D.P. Birnie, Rational solvent selection strategies to combat striation formation during spin coating of thin films, J. Mater. Res. 16 (2001) 1145-1154.   DOI
22 L. Liu, Z. Mei, A. Tang, A. Azarov, A. Kuznetsov, Q.K. Xue, X. Du, Oxygen vacancies: the origin of n-type conductivity in ZnO, Phys. Rev. B 93 (2016) 1-7.
23 S. Jeong, Y.G. Ha, J. Moon, A. Facchetti, T.J. Marks, Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors, Adv. Mater. 22 (2010) 1346-1350.   DOI
24 S.Y. Park, S. Kim, J. Yoo, K.H. Lim, E. Lee, K. Kim, J. Kim, Y.S. Kim, Aqueous zinc ammine complex for solution-processed ZnO semiconductors in thin film transistors, RSC Adv. 4 (2014) 11295-11299.   DOI
25 P.T. Liu, Y.T. Chou, L.F. Teng, Environment-dependent metastability of passivationfree indium zinc oxide thin film transistor after gate bias stress, Appl. Phys. Lett. 95 (2009) 233504-233506.   DOI
26 H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, High-mobility thin-film transistor with amorphous $InGaZnO_4$ channel fabricated by room temperature rf-magnetron sputtering, Appl. Phys. Lett. 89 (2006) 112-123.
27 S.Y. Park, B.J. Kim, K. Kim, M.S. Kang, K.H. Lim, T.I. Lee, J.M. Myoung, H.K. Baik, J.H. Cho, Y.S. Kim, Low-temperature, solution-processed and alkali metal doped ZnO for high-performance thin-film transistors, Adv. Mater. 24 (2012) 834-838.   DOI
28 C.L. Lin, Y.C. Chen, A novel ltps-tft pixel circuit compensating for tft thresholdvoltage shift and oled degradation for amoled, IEEE Electron. Device Lett. 28 (2007) 129-131.   DOI
29 Y.G. Mo, M. Kim, C.K. Kang, J.H. Jeong, Y.S. Park, C.G. Choi, H.D. Kim, S.S. Kim, Amorphous-oxide TFT backplane for large-sized AMOLED TVs, J. Soc. Inf. Disp. 19 (2011) 16-19.   DOI
30 T. Ivanova, A. Harizanova, T. Koutzarova, B. Vetruyen, Optical and structural study of Ga and in co-doped ZnO films, Colloid. Surface. Physicochem. Eng. Asp. 532 (2017) 357-362.   DOI
31 E. Chong, Y.S. Chun, S.H. Kim, Y.L. Sang, Effect of oxygen on the threshold voltage of a-IGZO TFT, J. Electron. Eng. Technol. 6 (2011) 539-542.   DOI
32 E. Chong, Y.S. Chun, Y.L. Sang, Effect of trap density on the stability of siinzno thinfilm transistor under temperature and bias-induced stress, Electrochem. Solid State Lett. 14 (2011) 96-102.