• Title/Summary/Keyword: Zn electrode

Search Result 397, Processing Time 0.023 seconds

Addition Effects of Sheet-like Ni Nanopowder on the Electrochemical Properties of Positive Electrode in Ni-Zn Redox Flow Battery (Ni-Zn 레독스 플로우 전지에 있어서 양극의 전기화학적 특성에 미치는 쉬트 형상의 Ni 나노분말 첨가 효과)

  • Seok, Hye-Won;Kim, Sei-Ki;Kang, Yang-Koo;Hong, Yeon-Woo;Lee, Young-Jin;Kim, Beom-Su;Ju, Byeong-Kwon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.9
    • /
    • pp.582-588
    • /
    • 2014
  • 3 mol% Co-added $Ni(OH)_2$ fine powders, which showed ${\beta}$-phase, as positive electrode materials have been fabricated using $NiSO_4{\cdot}6H_2O$ aqueous solution by ultrasonic spray-chemical precipitation and subsequent hydrothermal method, and sheet-like Ni nanopowder was fabricated by mechano-chemical reduction method. The addition effects of the sheet-like Ni nanopowder on the electrochemical properties of the positive electrode in Ni-Zn Redox flow battery were investigated. Impedance spectroscopy revealed that the addition of the sheet-like Ni nanopowder resulted in decrease in the electrical resistivity; 10 wt.% addition reduced the electrical properties by a fifth. Cyclic voltammetry showed the addition of the sheet-like Ni nanopowder resulted in decrease in the potential difference of oxidation and reduction; this means the increase in the reversability for electrode reduction. Charge/discharge measurement confirmed that the addition of the sheet-like Ni nanopowder resulted in the increase in the discharge efficiency.

Removal of Heavy Metal Ions by Electrocoagulation for Continuous Use of Fe2+/Fe3+-Mediated Electrochemical Oxidation Solutions

  • Jung, Youn-Su;Pyo, Myoung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.974-978
    • /
    • 2008
  • Removal of heavy metal ions ($Cd^{2+}$ and $Zn^{2+}$) by electrocoagulation (ECG) was investigated in an acidic condition, which is necessary for re-using or discharging the mediated electrochemical oxidation (MEO) media. Effects of various parameters such as electrolytes, current densities, and electrode materials were examined for a metal-contaminated MEO system using $Fe^{2+}/Fe^{3+}$ pairs as a mediator. It was found that ECG with Al electrodes is greatly affected by the presence of $Fe^{2+}$. [$Cd^{2+}$] and [$Zn^{2+}$] remain constant until [$Fe^{2+}$] reaches a certain concentration level (ca. 10 mM). This preferential removal of $Fe^{2+}$ during ECG with Al electrodes is not alleviated by controlling current densities, potential programs, and solution mixing. ECG with Fe electrodes, on the other hand, resulted in relatively fast removal of $Cd^{2+}$ and $Zn^{2+}$ under coexistence of $Fe^{2+}$, indicative of the different role between $Fe^{n+}$ generated from an electrode and $Fe^{2+}$ initially present in a solution. When ECG was performed with Fe electrodes until [$Fe^{n+}$] became the same as the concentration of initially present $Fe^{2+}$, [$Cd^{2+}$] and [$Zn^{2+}$] were reduced to one-tenth of the initial concentrations, suggesting the possibility of a continuous use of the medium for a subsequent MEO process.

Fundamental Study on Cathodic Protection and Material Development as Erosion-Control Methods of Oceanic Centrifugal Pump(1) (해상용 원심펌프 임펠러의 침식억제법으로 음극방식 및 재료개발에 관한 기초연구 1)

  • 이진열;임우조
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.56-66
    • /
    • 1995
  • Recently, with theraped advancement in th oceanology such an ocean-going vessel and oceanic structures, there is a need to study the cavitation erosion-corrosion control of pump impeller, the partial element of ocean machinery, for more effective operation. Especially, the cathodic protection (impressed current method & Al-sacrificial anode method) was applied to sea water, and Cu-alloy material mixed Zn & Al was used as a control method of cavitation erosion-corrosion. In this study, used the piezoelectric vibrator with 20KHz, 24.mu.m to cavity generation apparatus, and investigated the weight loss, weight loss rate, electrode potential & current density etc. under this condition. According to test result, thos describes how to indentify an influence of the cathodic protection and Al & Zn addition in material development for the control of cavitation erosion-corrosion, and those will serve as fundamental data on the cavitation erosion-corrosion control of oceanic centrifugal pump.

  • PDF

Low Temperature Sintering and Electrical Properties of Bi-based ZnO Chip Varistor (Bi계 ZnO 칩 바리스터의 저온소결과 전기적 특성)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.876-881
    • /
    • 2011
  • The sintering, defect and grain boundary characteristics of Bi-based ZnO chip varistor (1,608 mm size) have been investigated to know the possibility of lowering a manufacturing price by using 100 % Ag inner-electrode. The samples were prepared by general multilayer chip varistor process and characterized by shrinkage, SEM, current-voltage (I-V), admittance spectroscopy (AS), impedance and modulus spectroscopy (IS & MS) measurement. There are no problems to make a chip varistor with 100% Ag inner-electrode in the sintering temperature range of 850~900$^{\circ}C$ for 1 h in air. A good varistor characteristics ($V_n$= 9.3~15.4 V, a= 23~24, $I_L$= 1.0~1.6 ${\mu}A$) were revealed but formed $Zn_i^{{\cdot}{\cdot}}$(0.209 eV) as dominant defect, and increased the distributional inhomogeneity and the temperature instability in grain boundary barriers.

The Effects of Composition on the Interface Resistance in Bi-System Glass Frit (Bi 계열 Glass Frit 조성이 계면저항에 미치는 영향)

  • Kim, In Ae;Shin, Hyo Soon;Yeo, Dong Hun;Jeong, Dae Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.12
    • /
    • pp.858-862
    • /
    • 2013
  • The front electrode should be used to make solar cell panel so as to collect electron. The front electrode is used by paste type, printed on the Si-solar cell wafer and sintered at about $800^{\circ}C$. The paste is composed Ag powder and glass frit which make the ohmic contact between Ag electrode and n-type semiconductor layer. From the previous study, the Ag electrodes which used two commercial glass frit of Bi-system were so different on the interface resistance. The main composition of them was Bi-Zn-B-Si-O and few additives added in one of them. In this study, glass frit was made with the ratio of $Bi_2O_3$ and ZnO on the main composition, and then paste using glass frit was prepared respectively. And, also, the paste using the glass frit added oxide additives were prepared. The change of interface resistance was not large with the ratio of $Bi_2O_3$ and ZnO. In the case of G6 glass frit, 78 wt% $Bi_2O_3$ addition, the interface resistance was $190{\Omega}$ and most low. In the glass frit added oxide, the case of Ca increased over 10 times than it of G6 glass frit on the interface resistance. It was thaught that after sintering, Ca added glass frit was not flowed to the interface between Ag electrode and wafer but was in the Ag electrode.

Cobalt (Co) Electrode FBAR Devices Fabricated on Seven-Layered Bragg Reflectors and Their Resonance Characteristics

  • Mai Linh;Yim, Mun-Hyuk;Yoon, Gi-Wan;Kim, Dong-Hyun
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.3
    • /
    • pp.129-132
    • /
    • 2003
  • In this paper, cobalt (Co)-electrode FBAR devices fabricated on seven-layered Bragg Reflectors are presented along with their resonance characteristics. ZnO films are used as the resonating material in FBAR devices where the Co electrode is 3000${\AA}$ thick. All processes are preformed in an RF magnetron sputtering system. As a result of characterization, the resonance characteristics are observed to depend strongly on the quality of ZnO film and Bragg Reflectors. In addition, the FBAR devices with W/$SiO_2$ reflectors show good resonance characteristics in term of return loss and quality-factor (Q-factor).

Cobalt (Co) Electrode FBAR Devices Fabricated on Seven-Layered Bragg Reflectors and Their Resonance Characteristic

  • Mai Linh;Munhyuk Yim;Kim, Dong-Hyun;Giwan Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.381-384
    • /
    • 2003
  • In this paper, cobalt (Co)-electrode FBAR devices fabricated on seven-layered Bragg Reflectors are presented along with their resonance characteristics. ZnO films are used as the resonating material in FBAR devices where the Co electrode is 3000$\AA$ thick. All processes are preformed in an RF magnetron sputtering system. As a result of characterization, the resonance characteristics are observed to depend strongly on the quality of ZnO film and Bragg Reflectors. In addition, the FBAR devices with W/SiO$_2$ reflectors show good resonance characteristics in term of return loss and quality-factor (Q-factor).

  • PDF

Effects of Thick Bottom Electrode on ZnO-based FBAR Devices

  • Lee, Jae-Young;Mai, Linh;Pham, Van Su;Kabir, S. M. Humayun;Yoon, Gi-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.211-214
    • /
    • 2007
  • In this paper, the resonance characteristics of ZnO-based film bulk acoustic resonator (FBAR) devices with thick bottom electrode are investigated. The ultra-thin Cr film (300 ${\AA}-thick$) between $SiO_2$ film and W film is formed by a sputtering-deposition in order to enhance the adherence at their interfaces. The resonance frequency of three different resonator devices was observed to be ${\sim}2.7$ GHz, and the resonance characteristics $(S_{11})$ of the FBAR devices were found to have a strong dependence on the thickness of bottom electrode.

  • PDF

The interfaces between Alq3 and ZnO substrates with various orientations

  • Lee, Jeong-Han;Lee, Yeon-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.343-343
    • /
    • 2011
  • ZnO has been introduced as one of the good candidates for next generation opto-electronics. Recently, ZnO is known to be suitable for the transparent electrode in organic solar cells and light emitting devices. The contact with n-type organic material has been studied due to the n-type properties of ZnO. However, the surface of ZnO has shown different electronic property with respect to its surface orientation. Therefore, it is presumed that there are differences in the interfacial electronic structures between organic materials and ZnO with different orientation. Therefore, it is required to classify the interfacial electronic structures according to the surface orientation of ZnO. In this study, we measured the interfacial electronic structures between the ZnO substrate having various orientations and a typical n-type organic material, tris-(8-hydroxyquinoline) aluminum (Alq3). In-situ x-ray and ultraviolet photoelectron spectroscopy measurements revealed the interfacial electronic structures. We found the changes in the electronic structures with respect to the orientation of ZnO substrate and it could be used to improve the contact between ZnO and Alq3.

  • PDF